001443919 000__ 03495cam\a2200613Ii\4500
001443919 001__ 1443919
001443919 003__ OCoLC
001443919 005__ 20230310003609.0
001443919 006__ m\\\\\o\\d\\\\\\\\
001443919 007__ cr\un\nnnunnun
001443919 008__ 220126s2022\\\\sz\a\\\\ob\\\\001\0\eng\d
001443919 019__ $$a1293848707$$a1293895537$$a1294333099
001443919 020__ $$a9783030946364$$q(electronic bk.)
001443919 020__ $$a3030946363$$q(electronic bk.)
001443919 020__ $$a9783030946371
001443919 020__ $$a3030946371
001443919 020__ $$z9783030946357
001443919 020__ $$z3030946355
001443919 0247_ $$a10.1007/978-3-030-94636-4$$2doi
001443919 035__ $$aSP(OCoLC)1293774744
001443919 040__ $$aYDX$$beng$$erda$$epn$$cYDX$$dGW5XE$$dFIE$$dEBLCP$$dOCLCO$$dOCLCF$$dSFB$$dUKAHL$$dN$T$$dOCLCQ
001443919 049__ $$aISEA
001443919 050_4 $$aQA911$$b.L5 2022
001443919 08204 $$a532$$223
001443919 1001_ $$aLi, Jian,$$eauthor.
001443919 24510 $$aFinite volume methods for the incompressible Navier-Stokes equations /$$cJian Li, Xiaolin Lin, Zhangxing Chen.
001443919 264_1 $$aCham :$$bSpringer,$$c[2022]
001443919 264_4 $$c©2022
001443919 300__ $$a1 online resource :$$billustrations (some color).
001443919 336__ $$atext$$btxt$$2rdacontent
001443919 337__ $$acomputer$$bc$$2rdamedia
001443919 338__ $$aonline resource$$bcr$$2rdacarrier
001443919 4901_ $$aSpringerBriefs in applied sciences and technology. SpringerBriefs in mathematical methods,$$x2365-0834
001443919 504__ $$aIncludes bibliographical references and index.
001443919 5050_ $$aMathematical Foundation -- FVMs for the stationary Stokes equations -- FVMs for the stationary Navier-Stokes equations -- FVMs for the stationary for nonstationary Navier Stokes equations -- Glossary. .
001443919 506__ $$aAccess limited to authorized users.
001443919 520__ $$aThe book aims to provide a comprehensive understanding of the most recent developments in finite volume methods. Its focus is on the development and analysis of these methods for the two- and three-dimensional Navier-Stokes equations, supported by extensive numerical results. It covers the most used lower-order finite element pairs, with well-posedness and optimal analysis for these finite volume methods. The authors have attempted to make this book self-contained by offering complete proofs and theoretical results. While most of the material presented has been taught by the authors in a number of institutions over the past several years, they also include several updated theoretical results for the finite volume methods for the incompressible Navier-Stokes equations. This book is primarily developed to address research needs for students and academic and industrial researchers. It is particularly valuable as a research reference in the fields of engineering, mathematics, physics, and computer sciences. .
001443919 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed February 1, 2022).
001443919 650_0 $$aFinite volume method.
001443919 650_0 $$aNavier-Stokes equations.
001443919 650_6 $$aMéthodes de volumes finis.
001443919 650_6 $$aÉquations de Navier-Stokes.
001443919 655_7 $$aLlibres electrònics.$$2thub
001443919 655_0 $$aElectronic books.
001443919 7001_ $$aLin, Xiaolin,$$eauthor.
001443919 7001_ $$aChen, Zhangxing,$$eauthor.
001443919 77608 $$iPrint version:$$z3030946355$$z9783030946357$$w(OCoLC)1288665888
001443919 830_0 $$aSpringerBriefs in applied sciences and technology.$$pMathematical methods.$$x2365-0834
001443919 852__ $$bebk
001443919 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-94636-4$$zOnline Access$$91397441.1
001443919 909CO $$ooai:library.usi.edu:1443919$$pGLOBAL_SET
001443919 980__ $$aBIB
001443919 980__ $$aEBOOK
001443919 982__ $$aEbook
001443919 983__ $$aOnline
001443919 994__ $$a92$$bISE