001444244 000__ 03377cam\a2200577Ii\4500 001444244 001__ 1444244 001444244 003__ OCoLC 001444244 005__ 20230310003659.0 001444244 006__ m\\\\\o\\d\\\\\\\\ 001444244 007__ cr\un\nnnunnun 001444244 008__ 220206s2022\\\\sz\a\\\\ob\\\\000\0\eng\d 001444244 019__ $$a1295378370$$a1295405467$$a1296666794 001444244 020__ $$a9783030105310$$q(electronic bk.) 001444244 020__ $$a3030105318$$q(electronic bk.) 001444244 020__ $$z9783030105303 001444244 020__ $$z303010530X 001444244 0247_ $$a10.1007/978-3-030-10531-0$$2doi 001444244 035__ $$aSP(OCoLC)1295351494 001444244 040__ $$aYDX$$beng$$erda$$epn$$cYDX$$dGW5XE$$dEBLCP$$dDKU$$dOCLCO$$dOCLCF$$dUKAHL$$dOCLCQ 001444244 049__ $$aISEA 001444244 050_4 $$aQA276.4$$b.K36 2022 001444244 08204 $$a519.50285$$223 001444244 1001_ $$aKaptein, Maurits,$$eauthor. 001444244 24510 $$aStatistics for data scientists :$$ban introduction to probability, statistics, and data analysis /$$cMaurits Kaptein, Edwin van den Heuvel. 001444244 264_1 $$aCham :$$bSpringer,$$c[2022] 001444244 264_4 $$c©2022 001444244 300__ $$a1 online resource :$$billustration (some color). 001444244 336__ $$atext$$btxt$$2rdacontent 001444244 337__ $$acomputer$$bc$$2rdamedia 001444244 338__ $$aonline resource$$bcr$$2rdacarrier 001444244 347__ $$atext file$$bPDF$$2rda 001444244 4901_ $$aUndergraduate topics in computer science 001444244 504__ $$aIncludes bibliographical references. 001444244 5050_ $$a1 A First Look at Data -- 2 Sampling Plans and Estimates -- 3 Probability Theory -- 4 Random Variables and Distributions -- 5 Estimation -- 6 Multiple Random Variables -- 7 Making Decisions in Uncertainty -- 8 Bayesian Statistics. 001444244 506__ $$aAccess limited to authorized users. 001444244 520__ $$aThis book provides an undergraduate introduction to analysing data for data science, computer science, and quantitative social science students. It uniquely combines a hands-on approach to data analysis supported by numerous real data examples and reusable [R] code with a rigorous treatment of probability and statistical principles. Where contemporary undergraduate textbooks in probability theory or statistics often miss applications and an introductory treatment of modern methods (bootstrapping, Bayes, etc.), and where applied data analysis books often miss a rigorous theoretical treatment, this book provides an accessible but thorough introduction into data analysis, using statistical methods combining the two viewpoints. The book further focuses on methods for dealing with large data-sets and streaming-data and hence provides a single-course introduction of statistical methods for data science. 001444244 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed February 8, 2022). 001444244 650_0 $$aMathematical analysis$$xStatistical methods. 001444244 650_0 $$aQuantitative research$$xStatistical methods. 001444244 650_6 $$aAnalyse mathématique$$xMéthodes statistiques. 001444244 650_6 $$aRecherche quantitative$$xMéthodes statistiques. 001444244 655_0 $$aElectronic books. 001444244 7001_ $$aHeuvel, Edwin van den,$$eauthor. 001444244 77608 $$iPrint version:$$aKaptein, Maurits.$$tStatistics for data scientists.$$dCham : Springer, 2022$$z9783030105303$$w(OCoLC)1295100395 001444244 830_0 $$aUndergraduate topics in computer science. 001444244 852__ $$bebk 001444244 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-10531-0$$zOnline Access$$91397441.1 001444244 909CO $$ooai:library.usi.edu:1444244$$pGLOBAL_SET 001444244 980__ $$aBIB 001444244 980__ $$aEBOOK 001444244 982__ $$aEbook 001444244 983__ $$aOnline 001444244 994__ $$a92$$bISE