001444653 000__ 03524cam\a2200553\a\4500 001444653 001__ 1444653 001444653 003__ OCoLC 001444653 005__ 20230310003721.0 001444653 006__ m\\\\\o\\d\\\\\\\\ 001444653 007__ cr\un\nnnunnun 001444653 008__ 220226s2022\\\\si\\\\\\ob\\\\000\0\eng\d 001444653 019__ $$a1298934557$$a1299144993$$a1299275627$$a1299298926 001444653 020__ $$a9789811691706$$q(electronic bk.) 001444653 020__ $$a9811691703$$q(electronic bk.) 001444653 020__ $$z981169169X 001444653 020__ $$z9789811691690 001444653 0247_ $$a10.1007/978-981-16-9170-6$$2doi 001444653 035__ $$aSP(OCoLC)1299382997 001444653 040__ $$aEBLCP$$beng$$epn$$cEBLCP$$dYDX$$dGW5XE$$dOCLCO$$dOCLCF$$dOCLCO$$dSFB$$dOCLCQ$$dUKAHL$$dOCLCQ 001444653 049__ $$aISEA 001444653 050_4 $$aQA9.35 001444653 08204 $$a511.3$$223 001444653 1001_ $$aNishisato, Shizuhiko,$$d1935- 001444653 24510 $$aOptimal quantification and symmetry /$$cShizuhiko Nishisato. 001444653 260__ $$aSingapore :$$bSpringer,$$c2022. 001444653 300__ $$a1 online resource (199 pages) 001444653 336__ $$atext$$btxt$$2rdacontent 001444653 337__ $$acomputer$$bc$$2rdamedia 001444653 338__ $$aonline resource$$bcr$$2rdacarrier 001444653 4901_ $$aBehaviormetrics ;$$vv. 12 001444653 504__ $$aIncludes bibliographical references. 001444653 5050_ $$aOptimality and Symmetry -- Examples of Quantification -- Constraints on Quantification -- Quantification Procedures -- Mathematical Symmetry -- Data Format and Information -- Space Theory and Symmetry. 001444653 506__ $$aAccess limited to authorized users. 001444653 520__ $$aThis book offers a unique new look at the familiar quantification theory from the point of view of mathematical symmetry and spatial symmetry. Symmetry exists in many aspects of our lifefor instance, in the arts and biology as an ingredient of beauty and equilibrium, and more importantly, for data analysis as an indispensable representation of functional optimality. This unique focus on symmetry clarifies the objectives of quantification theory and the demarcation of quantification space, something that has never caught the attention of researchers. Mathematical symmetry is well known, as can be inferred from Hirschfelds simultaneous linear regressions, but spatial symmetry has not been discussed before, except for what one may infer from Nishisatos dual scaling. The focus on symmetry here clarifies the demarcation of quantification analysis and makes it easier to understand such a perennial problem as that of joint graphical display in quantification theory. The new framework will help advance the frontier of further developments of quantification theory. Many numerical examples are included to clarify the details of quantification theory, with a focus on symmetry as its operational principle. In this way, the book is useful not only for graduate students but also for researchers in diverse areas of data analysis. 001444653 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed March 9, 2022). 001444653 650_0 $$aPredicate calculus. 001444653 650_0 $$aSymmetry (Mathematics) 001444653 650_6 $$aCalcul des prédicats. 001444653 650_6 $$aSymétrie (Mathématiques) 001444653 655_7 $$aLlibres electrònics.$$2thub 001444653 655_0 $$aElectronic books. 001444653 77608 $$iPrint version:$$aNishisato, Shizuhiko.$$tOptimal Quantification and Symmetry.$$dSingapore : Springer Singapore Pte. Limited, ©2022$$z9789811691690 001444653 830_0 $$aBehaviormetrics ;$$vv. 12. 001444653 852__ $$bebk 001444653 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-981-16-9170-6$$zOnline Access$$91397441.1 001444653 909CO $$ooai:library.usi.edu:1444653$$pGLOBAL_SET 001444653 980__ $$aBIB 001444653 980__ $$aEBOOK 001444653 982__ $$aEbook 001444653 983__ $$aOnline 001444653 994__ $$a92$$bISE