001444697 000__ 02976cam\a2200529Ii\4500 001444697 001__ 1444697 001444697 003__ OCoLC 001444697 005__ 20230310003723.0 001444697 006__ m\\\\\o\\d\\\\\\\\ 001444697 007__ cr\un\nnnunnun 001444697 008__ 220301s2022\\\\sz\\\\\\ob\\\\001\0\eng\d 001444697 019__ $$a1301449141$$a1301485641$$a1301772001 001444697 020__ $$a9783030945008$$q(electronic bk.) 001444697 020__ $$a3030945006$$q(electronic bk.) 001444697 020__ $$z9783030944995 001444697 020__ $$z3030944999 001444697 0247_ $$a10.1007/978-3-030-94500-8$$2doi 001444697 035__ $$aSP(OCoLC)1300781100 001444697 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dYDX$$dEBLCP$$dOCLCO$$dOCLCF$$dOCLCO$$dOCLCQ 001444697 049__ $$aISEA 001444697 050_4 $$aQA641 001444697 08204 $$a516.3/6$$223 001444697 1001_ $$aMochizuki, Takuro,$$d1972-$$eauthor. 001444697 24510 $$aPeriodic monopoles and difference modules /$$cTakuro Mochizuki. 001444697 264_1 $$aCham, Switzerland :$$bSpringer,$$c2022. 001444697 300__ $$a1 online resource (xviii, 324 pages) 001444697 336__ $$atext$$btxt$$2rdacontent 001444697 337__ $$acomputer$$bc$$2rdamedia 001444697 338__ $$aonline resource$$bcr$$2rdacarrier 001444697 4901_ $$aLecture notes in mathematics,$$x1617-9692 ;$$vvolume 2300 001444697 504__ $$aIncludes bibliographical references and index. 001444697 506__ $$aAccess limited to authorized users. 001444697 520__ $$aThis book studies a class of monopoles defined by certain mild conditions, called periodic monopoles of generalized Cherkis-Kapustin (GCK) type. It presents a classification of the latter in terms of difference modules with parabolic structure, revealing a kind of Kobayashi-Hitchin correspondence between differential geometric objects and algebraic objects. It also clarifies the asymptotic behaviour of these monopoles around infinity. The theory of periodic monopoles of GCK type has applications to Yang-Mills theory in differential geometry and to the study of difference modules in dynamical algebraic geometry. A complete account of the theory is given, including major generalizations of results due to Charbonneau, Cherkis, Hurtubise, Kapustin, and others, and a new and original generalization of the nonabelian Hodge correspondence first studied by Corlette, Donaldson, Hitchin and Simpson. This work will be of interest to graduate students and researchers in differential and algebraic geometry, as well as in mathematical physics. 001444697 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed March 1, 2022). 001444697 650_0 $$aGeometry, Differential. 001444697 650_0 $$aYang-Mills theory. 001444697 650_6 $$aGéométrie différentielle. 001444697 650_6 $$aThéorie de Yang-Mills. 001444697 655_0 $$aElectronic books. 001444697 77608 $$iPrint version: $$z3030944999$$z9783030944995$$w(OCoLC)1288193713 001444697 830_0 $$aLecture notes in mathematics (Springer-Verlag) ;$$vv. 2300.$$x1617-9692 001444697 852__ $$bebk 001444697 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-94500-8$$zOnline Access$$91397441.1 001444697 909CO $$ooai:library.usi.edu:1444697$$pGLOBAL_SET 001444697 980__ $$aBIB 001444697 980__ $$aEBOOK 001444697 982__ $$aEbook 001444697 983__ $$aOnline 001444697 994__ $$a92$$bISE