001445891 000__ 04890cam\a2200541Ii\4500 001445891 001__ 1445891 001445891 003__ OCoLC 001445891 005__ 20230310003856.0 001445891 006__ m\\\\\o\\d\\\\\\\\ 001445891 007__ cr\cn\nnnunnun 001445891 008__ 220413s2022\\\\si\\\\\\ob\\\\001\0\eng\d 001445891 019__ $$a1309129842$$a1309863933$$a1309959839$$a1310332230 001445891 020__ $$a9789811681899$$q(electronic bk.) 001445891 020__ $$a9811681899$$q(electronic bk.) 001445891 020__ $$z9789811681882$$q(print) 001445891 020__ $$z9811681880 001445891 0247_ $$a10.1007/978-981-16-8189-9$$2doi 001445891 035__ $$aSP(OCoLC)1310642315 001445891 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dEBLCP$$dYDX$$dOCLCO$$dOCLCF$$dN$T$$dUKAHL$$dOCLCQ 001445891 049__ $$aISEA 001445891 050_4 $$aQC20.7.R43 001445891 08204 $$a530.14/3$$223 001445891 1001_ $$aKunihiro, Teiji,$$eauthor. 001445891 24510 $$aGeometrical formulation of renormalization-group method as an asymptotic analysis :$$bwith applications to derivation of causal fluid dynamic /$$cTeiji Kunihiro, Yuta Kikuchi, Kyosuke Tsumura. 001445891 264_1 $$aSingapore :$$bSpringer,$$c2022. 001445891 300__ $$a1 online resource (1 volume) :$$billustrations (black and white, and color). 001445891 336__ $$atext$$btxt$$2rdacontent 001445891 337__ $$acomputer$$bc$$2rdamedia 001445891 338__ $$aonline resource$$bcr$$2rdacarrier 001445891 4901_ $$aFundamental theories of physics ;$$vvolume 206 001445891 504__ $$aIncludes bibliographical references and index. 001445891 5050_ $$aNotion of Effective Theories in Physical Sciences -- Divergence and Secular Term in the Perturbation Series of Ordinary Differential Equations -- Traditional Resummation Methods -- Elementary Introduction of the RG method in Terms of the Notion of Envelopes -- Ei-Fujii-Kunihiro Formulation and Relation to Kuramotos reduction scheme -- Relation to the RG Theory in Quantum Field Theory -- Resummation of the Perturbation Series in Quantum Methods -- Illustrative Examples -- Slow Dynamics Around Critical Point in Bifurcation Phenomena -- Dynamical Reduction of A Generic Non-linear Evolution Equation with Semi-simple Linear Operator -- A Generic Case when the Linear Operator Has a Jordan-cell Structure -- Dynamical Reduction of Difference Equations -- Slow Dynamics in Some Partial Differential Equations -- Some Mathematical Formulae -- Dynamical Reduction of Kinetic Equations -- Relativistic First-Order Fluid Dynamic Equation -- Doublet Scheme and its Applications -- Relativistic Causal Fluid dynamic Equation -- Numerical Analysis of Transport Coefficients and Relaxation Times -- Reactive Multi-component Systems -- Non-relativistic Case and Application to Cold Atoms -- Summary and Future Prospects. 001445891 506__ $$aAccess limited to authorized users. 001445891 520__ $$aThis book presents a comprehensive account of the renormalization-group (RG) method and its extension, the doublet scheme, in a geometrical point of view. It extract long timescale macroscopic/mesoscopic dynamics from microscopic equations in an intuitively understandable way rather than in a mathematically rigorous manner and introduces readers to a mathematically elementary, but useful and widely applicable technique for analyzing asymptotic solutions in mathematical models of nature. The book begins with the basic notion of the RG theory, including its connection with the separation of scales. Then it formulates the RG method as a construction method of envelopes of the naive perturbative solutions containing secular terms, and then demonstrates the formulation in various types of evolution equations. Lastly, it describes successful physical examples, such as stochastic and transport phenomena including second-order relativistic as well as nonrelativistic fluid dynamics with causality and transport phenomena in cold atoms, with extensive numerical expositions of transport coefficients and relaxation times. Requiring only an undergraduate-level understanding of physics and mathematics, the book clearly describes the notions and mathematical techniques with a wealth of examples. It is a unique and can be enlightening resource for readers who feel mystified by renormalization theory in quantum field theory. 001445891 588__ $$aDescription based on print version record. 001445891 650_0 $$aRenormalization group. 001445891 650_6 $$aGroupe de renormalisation. 001445891 655_0 $$aElectronic books. 001445891 7001_ $$aKikuchi, Yuta,$$eauthor. 001445891 7001_ $$aTsumura, Kyosuke,$$eauthor. 001445891 77608 $$iPrint version:$$aKUNIHIRO, TEIJI. KIKUCHI, YUTA. TSUMURA, KYOSUKE.$$tGEOMETRICAL FORMULATION OF RENORMALIZATION-GROUP METHOD AS AN ASYMPTOTIC ANALYSIS.$$d[Place of publication not identified] : SPRINGER VERLAG, SINGAPOR, 2022$$z9811681880$$w(OCoLC)1280602266 001445891 830_0 $$aFundamental theories of physics ;$$vv. 206. 001445891 852__ $$bebk 001445891 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-981-16-8189-9$$zOnline Access$$91397441.1 001445891 909CO $$ooai:library.usi.edu:1445891$$pGLOBAL_SET 001445891 980__ $$aBIB 001445891 980__ $$aEBOOK 001445891 982__ $$aEbook 001445891 983__ $$aOnline 001445891 994__ $$a92$$bISE