Linked e-resources
Details
Table of Contents
Intro
Foreword
Preface
Contents
About the Editors
1 Introduction to Neutron Physics
1.1 Introduction
1.2 Properties of Neutrons
1.2.1 Neutron Mass
1.2.2 Neutron Charge
1.2.3 Neutron Magnetic Dipole Moment
1.2.4 Neutron Spin
1.2.5 Neutron Lifetime
1.2.6 Neutron Electric Dipole Moment
1.3 Classification of Neutrons
1.3.1 Ultra-Cold Neutrons
1.3.2 Very Cold Neutrons
1.3.3 Cold Neutrons
1.3.4 Thermal Neutrons
1.3.5 Epithermal Neutrons
1.3.6 Resonance Neutrons
1.3.7 Intermediate Energy Neutrons
1.3.8 Fast Neutrons
1.3.9 High-Energy Neutrons
1.4 Neutrons Matter Interaction
1.5 Neutrons Imaging
1.5.1 Attenuation-Based Neutron Imaging
1.5.2 Phase Contrast Neutron Imaging
1.5.3 Polarized Neutron Imaging
1.5.4 Bragg Edge Imaging
1.6 X-ray Versus Neutron Imaging
1.7 Summary
References
2 Physics and Design of Sources for Neutron Imaging
2.1 Introduction
2.2 Neutron Sources
2.2.1 Research Reactor
2.2.2 Isotopic Source
2.2.3 Accelerator-Based Source
2.2.4 Spallation Source
2.3 Nuclear Fission
2.3.1 Reactors as Source of Neutrons
2.3.2 Moderation
2.4 Design of Reactor Based Neutron Imaging Sources
2.4.1 Collimator and Its Role
2.4.2 Image Quality Parameters
2.4.3 Shielding
2.5 Non-reactor Based Neutron Imaging Sources
2.5.1 Radioisotope Based Neutron Source
2.5.2 Accelerator-Based Neutron Source
2.6 Accelerators for Neutron Productions
2.7 Photo Neutron Source
2.8 Spallation Neutron Source
2.9 Design Consideration of Non-reactor Based Sources for Neutron Imaging
2.10 Summary
References
3 Neutron Optics and Detectors
3.1 Absorption-Based Optics
3.1.1 Neutron Collimators
3.1.2 Velocity Selector
3.1.3 3He Spin Filter for Neutrons
3.2 Reflective Optics
3.2.1 Neutron Mirrors
3.2.2 Neutron Supermirror
3.2.3 Neutron Guide
3.3 Refractive Optics
3.3.1 Neutron Lenses and Prisms
3.4 Diffractive Optics
3.4.1 Crystal Monochromator
3.4.2 Neutron Filters
3.5 Neutron Detection: Basic Principle and Methodology
3.6 Neutron Detectors for Imaging Applications
3.6.1 Film Based Detectors
3.6.2 Neutron Image Plate (NIP)
3.6.3 Scintillator-Based Detectors
3.6.4 Gas-Based Detectors
References
4 Major Neutron Source Facilities Across the Globe
4.1 Introduction: Overview of Neutron Imaging Facilities-Past and Present
4.2 Global Facilities
4.3 Neutron Imaging at Reactor-Based Sources
4.3.1 Algeria, Es-SALAM, Centre de Recherche Nucléaire de Birine (CRNB) 15 MW-In-House Usage
4.3.2 Algeria, NUR, CRND, 1 MW-In-House Usage
4.3.3 Argentina, RA-6, 1 MW, In-House Usage
4.3.4 Australia, DINGO, OPAL 20 MW, User Facility
4.3.5 Austria, Atominstitut, Vienna, TRIGA II, 0.25 MW, In-House Usage
4.3.6 Bangladesh, TRIGA MARK II, 3 MW, In-House Usage
Foreword
Preface
Contents
About the Editors
1 Introduction to Neutron Physics
1.1 Introduction
1.2 Properties of Neutrons
1.2.1 Neutron Mass
1.2.2 Neutron Charge
1.2.3 Neutron Magnetic Dipole Moment
1.2.4 Neutron Spin
1.2.5 Neutron Lifetime
1.2.6 Neutron Electric Dipole Moment
1.3 Classification of Neutrons
1.3.1 Ultra-Cold Neutrons
1.3.2 Very Cold Neutrons
1.3.3 Cold Neutrons
1.3.4 Thermal Neutrons
1.3.5 Epithermal Neutrons
1.3.6 Resonance Neutrons
1.3.7 Intermediate Energy Neutrons
1.3.8 Fast Neutrons
1.3.9 High-Energy Neutrons
1.4 Neutrons Matter Interaction
1.5 Neutrons Imaging
1.5.1 Attenuation-Based Neutron Imaging
1.5.2 Phase Contrast Neutron Imaging
1.5.3 Polarized Neutron Imaging
1.5.4 Bragg Edge Imaging
1.6 X-ray Versus Neutron Imaging
1.7 Summary
References
2 Physics and Design of Sources for Neutron Imaging
2.1 Introduction
2.2 Neutron Sources
2.2.1 Research Reactor
2.2.2 Isotopic Source
2.2.3 Accelerator-Based Source
2.2.4 Spallation Source
2.3 Nuclear Fission
2.3.1 Reactors as Source of Neutrons
2.3.2 Moderation
2.4 Design of Reactor Based Neutron Imaging Sources
2.4.1 Collimator and Its Role
2.4.2 Image Quality Parameters
2.4.3 Shielding
2.5 Non-reactor Based Neutron Imaging Sources
2.5.1 Radioisotope Based Neutron Source
2.5.2 Accelerator-Based Neutron Source
2.6 Accelerators for Neutron Productions
2.7 Photo Neutron Source
2.8 Spallation Neutron Source
2.9 Design Consideration of Non-reactor Based Sources for Neutron Imaging
2.10 Summary
References
3 Neutron Optics and Detectors
3.1 Absorption-Based Optics
3.1.1 Neutron Collimators
3.1.2 Velocity Selector
3.1.3 3He Spin Filter for Neutrons
3.2 Reflective Optics
3.2.1 Neutron Mirrors
3.2.2 Neutron Supermirror
3.2.3 Neutron Guide
3.3 Refractive Optics
3.3.1 Neutron Lenses and Prisms
3.4 Diffractive Optics
3.4.1 Crystal Monochromator
3.4.2 Neutron Filters
3.5 Neutron Detection: Basic Principle and Methodology
3.6 Neutron Detectors for Imaging Applications
3.6.1 Film Based Detectors
3.6.2 Neutron Image Plate (NIP)
3.6.3 Scintillator-Based Detectors
3.6.4 Gas-Based Detectors
References
4 Major Neutron Source Facilities Across the Globe
4.1 Introduction: Overview of Neutron Imaging Facilities-Past and Present
4.2 Global Facilities
4.3 Neutron Imaging at Reactor-Based Sources
4.3.1 Algeria, Es-SALAM, Centre de Recherche Nucléaire de Birine (CRNB) 15 MW-In-House Usage
4.3.2 Algeria, NUR, CRND, 1 MW-In-House Usage
4.3.3 Argentina, RA-6, 1 MW, In-House Usage
4.3.4 Australia, DINGO, OPAL 20 MW, User Facility
4.3.5 Austria, Atominstitut, Vienna, TRIGA II, 0.25 MW, In-House Usage
4.3.6 Bangladesh, TRIGA MARK II, 3 MW, In-House Usage