TY - GEN N2 - Nowadays, most digital modulation schemes are based on conventional signal constellations that have no algebraic group, ring, or field properties, e.g. square quadrature-amplitude modulation constellations. Signal constellations with algebraic structure can enhance the system performance. For instance, multidimensional signal constellations based on dense lattices can achieve performance gains due to the dense packing. The algebraic structure enables low-complexity decoding and detection schemes. In this work, signal constellations with algebraic properties and their application in spatial modulation transmission schemes are investigated. Several design approaches of two- and four-dimensional signal constellations based on Gaussian, Eisenstein, and Hurwitz integers are shown. Detection algorithms with reduced complexity are proposed. It is shown, that the proposed Eisenstein and Hurwitz constellations combined with the proposed suboptimal detection can outperform conventional two-dimensional constellations with ML detection. About the author Daniel Rohweder received the B.Eng. degree in electrical engineering and information technology and the M.Eng. degree in electrical systems engineering from HTWG Konstanz, University of Applied Sciences, Germany, in 2015 and 2017, respectively. In 2016, he joined the Institute of System Dynamics (ISD), HTWG Konstanz, working on signal constellations with algebraic properties and their application in spatial modulation transmission schemes. DO - 10.1007/978-3-658-37114-2 DO - doi AB - Nowadays, most digital modulation schemes are based on conventional signal constellations that have no algebraic group, ring, or field properties, e.g. square quadrature-amplitude modulation constellations. Signal constellations with algebraic structure can enhance the system performance. For instance, multidimensional signal constellations based on dense lattices can achieve performance gains due to the dense packing. The algebraic structure enables low-complexity decoding and detection schemes. In this work, signal constellations with algebraic properties and their application in spatial modulation transmission schemes are investigated. Several design approaches of two- and four-dimensional signal constellations based on Gaussian, Eisenstein, and Hurwitz integers are shown. Detection algorithms with reduced complexity are proposed. It is shown, that the proposed Eisenstein and Hurwitz constellations combined with the proposed suboptimal detection can outperform conventional two-dimensional constellations with ML detection. About the author Daniel Rohweder received the B.Eng. degree in electrical engineering and information technology and the M.Eng. degree in electrical systems engineering from HTWG Konstanz, University of Applied Sciences, Germany, in 2015 and 2017, respectively. In 2016, he joined the Institute of System Dynamics (ISD), HTWG Konstanz, working on signal constellations with algebraic properties and their application in spatial modulation transmission schemes. T1 - Signal constellations with algebraic properties and their application in spatial modulation transmission schemes / AU - Rohweder, Daniel Benjamin, CN - TK5102.9 ID - 1446296 KW - Signal processing KW - Signal processing KW - Group theory. KW - Traitement du signal KW - Traitement du signal KW - Théorie des groupes. SN - 9783658371142 SN - 3658371145 TI - Signal constellations with algebraic properties and their application in spatial modulation transmission schemes / LK - https://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-658-37114-2 UR - https://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-658-37114-2 ER -