001447258 000__ 05360cam\a2200517Ii\4500 001447258 001__ 1447258 001447258 003__ OCoLC 001447258 005__ 20230310004109.0 001447258 006__ m\\\\\o\\d\\\\\\\\ 001447258 007__ cr\un\nnnunnun 001447258 008__ 220606s2022\\\\sz\a\\\\ob\\\\001\0\eng\d 001447258 019__ $$a1322049510$$a1323252180 001447258 020__ $$a9783030952471$$q(electronic bk.) 001447258 020__ $$a3030952479$$q(electronic bk.) 001447258 020__ $$z9783030952464$$q(print) 001447258 020__ $$z3030952460 001447258 0247_ $$a10.1007/978-3-030-95247-1$$2doi 001447258 035__ $$aSP(OCoLC)1325189808 001447258 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dYDX$$dEBLCP$$dOCLCF$$dUKAHL$$dOCLCQ 001447258 049__ $$aISEA 001447258 050_4 $$aQC175.25.R3 001447258 08204 $$a536/.3$$223/eng/20220606 001447258 1001_ $$aFrisch, H.$$q(Hélène),$$eauthor.$$1https://orcid.org/0000-0002-9566-9529 001447258 24510 $$aRadiative transfer :$$ban introduction to exact and asymptotic methods /$$cHélène Frisch. 001447258 264_1 $$aCham, Switzerland :$$bSpringer,$$c2022. 001447258 300__ $$a1 online resource (xxxii, 593 pages) :$$billustrations. 001447258 336__ $$atext$$btxt$$2rdacontent 001447258 337__ $$acomputer$$bc$$2rdamedia 001447258 338__ $$aonline resource$$bcr$$2rdacarrier 001447258 504__ $$aIncludes bibliographical references and index. 001447258 5050_ $$aIntro -- Preface -- References -- Contents -- List of Figures -- List of Tables -- 1 An Overview of the Content -- 1.1 Part I: Scalar Radiative Transfer Equations -- 1.2 Part II: Scattering Polarization -- 1.3 Part III: Asymptotic Properties of Multiple Scattering -- References -- Part I Scalar Radiative Transfer Equations -- 2 Radiative Transfer Equations -- 2.1 The Integro-Differential Radiative Transfer Equations -- 2.1.1 Monochromatic Scattering -- 2.1.2 Complete Frequency Redistribution -- 2.1.3 The Diffuse Radiation Field -- 2.2 Integral Equations for the Source Function 001447258 5058_ $$a2.2.1 Monochromatic Scattering -- 2.2.2 The Milne Problem -- 2.2.3 Complete Frequency Redistribution -- 2.3 Neumann Series Expansion -- 2.4 The Green Function and Associated Functions -- 2.4.1 Some Definitions -- 2.4.2 A Lemma on Wiener-Hopf Equations -- 2.4.3 The Source Function and the Resolvent Function -- 2.4.4 Some Properties of the Green Function -- References -- 3 Exact Methods of Solution: A Brief Survey -- 3.1 The Infinite Medium and the Dispersion Function -- 3.2 Exact Methods for a Semi-Infinite Medium -- 3.2.1 The Wiener-Hopf Method -- 3.2.2 Traditional Real-Space Methods 001447258 5058_ $$a3.2.3 The Singular Integral Equation Approach -- References -- 4 Singular Integral Equations -- 4.1 The Inverse Laplace Transformation -- 4.1.1 The Half-Space Case -- 4.1.2 The Full-Space Case -- 4.2 The Direct Laplace Transformation -- 4.3 The Hilbert Transform Method of Solution -- 4.3.1 A Special Case -- 4.3.2 The General Case -- 4.3.3 Application to Radiative Transfer -- Appendix A: Hilbert Transforms -- A.1 Definition and Properties -- A.2 The Plemelj Formulae -- A.3 The Plemelj Formulae for a Dirac Distribution -- References -- 5 The Scattering Kernel and Associated Auxiliary Functions 001447258 5058_ $$aB.5 Moments of X(z) and H(z) -- References -- 6 The Surface Green Function and the Resolvent Function -- 6.1 Infinite Medium -- 6.1.1 The Fourier Transform Method -- 6.1.1.1 Complete Frequency Redistribution -- 6.1.1.2 Monochromatic Scattering -- 6.1.2 The Inverse Laplace Transform Method -- 6.2 Semi-infinite Medium. The Inverse Laplace Transform Method -- 6.2.1 Complete Frequency Redistribution -- 6.2.2 Monochromatic Scattering -- 6.3 The H-Function -- Appendix C: The Direct Laplace Transform Method -- C.1 Complete Frequency Redistribution -- C.2 Monochromatic Scattering -- References 001447258 506__ $$aAccess limited to authorized users. 001447258 520__ $$aThis book discusses analytic and asymptotic methods relevant to radiative transfer in dilute media, such as stellar and planetary atmospheres. Several methods, providing exact expressions for the radiation field in a semi-infinite atmosphere, are described in detail and applied to unpolarized and polarized continuous spectra and spectral lines. Among these methods, the Wiener-Hopf method, introduced in 1931 for a stellar atmospheric problem, is used today in fields such as solid mechanics, diffraction theory, or mathematical finance. Asymptotic analyses are carried out on unpolarized and polarized radiative transfer equations and on a discrete time random walk. Applicable when photons undergo a large number of scatterings, they provide criteria to distinguish between large-scale diffusive and non-diffusive behaviors, typical scales of variation of the radiation field, such as the thermalization length, and specific descriptions for regions close and far from boundaries. Its well organized synthetic view of exact and asymptotic methods of radiative transfer makes this book a valuable resource for both graduate students and professional scientists in astrophysics and beyond. 001447258 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed June 6, 2022). 001447258 650_0 $$aRadiative transfer. 001447258 655_0 $$aElectronic books. 001447258 77608 $$iPrint version: $$z3030952460$$z9783030952464$$w(OCoLC)1289480099 001447258 852__ $$bebk 001447258 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-95247-1$$zOnline Access$$91397441.1 001447258 909CO $$ooai:library.usi.edu:1447258$$pGLOBAL_SET 001447258 980__ $$aBIB 001447258 980__ $$aEBOOK 001447258 982__ $$aEbook 001447258 983__ $$aOnline 001447258 994__ $$a92$$bISE