001447627 000__ 03115cam\a2200529Ii\4500 001447627 001__ 1447627 001447627 003__ OCoLC 001447627 005__ 20230310004127.0 001447627 006__ m\\\\\o\\d\\\\\\\\ 001447627 007__ cr\un\nnnunnun 001447627 008__ 220621s2022\\\\sz\a\\\\ob\\\\000\0\eng\d 001447627 019__ $$a1330894943 001447627 020__ $$a9783030959562$$q(electronic bk.) 001447627 020__ $$a3030959562$$q(electronic bk.) 001447627 020__ $$z9783030959555$$q(print) 001447627 020__ $$z3030959554 001447627 0247_ $$a10.1007/978-3-030-95956-2$$2doi 001447627 035__ $$aSP(OCoLC)1331436812 001447627 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dYDX$$dEBLCP$$dOCLCF$$dOCLCQ 001447627 049__ $$aISEA 001447627 050_4 $$aQA387 001447627 08204 $$a512/.482$$223/eng/20220621 001447627 1001_ $$aGill, Nick,$$eauthor. 001447627 24510 $$aCherlin's conjecture for finite primitive binary permutation groups /$$cNick Gill, Martin W. Liebeck, Pablo Spiga. 001447627 264_1 $$aCham, Switzerland :$$bSpringer,$$c2022. 001447627 300__ $$a1 online resource (ix, 216 pages) :$$billustrations. 001447627 336__ $$atext$$btxt$$2rdacontent 001447627 337__ $$acomputer$$bc$$2rdamedia 001447627 338__ $$aonline resource$$bcr$$2rdacarrier 001447627 4901_ $$aLecture notes in mathematics,$$x1617-9692 ;$$vvolume 2302 001447627 504__ $$aIncludes bibliographical references. 001447627 5050_ $$a1. Introduction -- 2. Preliminary Results for Groups of Lie Type -- 3. Exceptional Groups -- 4. Classical Groups. 001447627 506__ $$aAccess limited to authorized users. 001447627 520__ $$aThis book gives a proof of Cherlin's conjecture for finite binary primitive permutation groups. Motivated by the part of model theory concerned with Lachlan's theory of finite homogeneous relational structures, this conjecture proposes a classification of those finite primitive permutation groups that have relational complexity equal to 2. The first part gives a full introduction to Cherlin's conjecture, including all the key ideas that have been used in the literature to prove some of its special cases. The second part completes the proof by dealing with primitive permutation groups that are almost simple with socle a group of Lie type. A great deal of material concerning properties of primitive permutation groups and almost simple groups is included, and new ideas are introduced. Addressing a hot topic which cuts across the disciplines of group theory, model theory and logic, this book will be of interest to a wide range of readers. It will be particularly useful for graduate students and researchers who need to work with simple groups of Lie type. 001447627 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed June 21, 2022). 001447627 650_0 $$aLie groups. 001447627 655_0 $$aElectronic books. 001447627 7001_ $$aLiebeck, M. W.$$q(Martin W.),$$d1954-$$eauthor. 001447627 7001_ $$aSpiga, Pablo,$$eauthor. 001447627 77608 $$iPrint version: $$z3030959554$$z9783030959555$$w(OCoLC)1291392548 001447627 830_0 $$aLecture notes in mathematics (Springer-Verlag) ;$$v2302.$$x1617-9692 001447627 852__ $$bebk 001447627 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-030-95956-2$$zOnline Access$$91397441.1 001447627 909CO $$ooai:library.usi.edu:1447627$$pGLOBAL_SET 001447627 980__ $$aBIB 001447627 980__ $$aEBOOK 001447627 982__ $$aEbook 001447627 983__ $$aOnline 001447627 994__ $$a92$$bISE