001447947 000__ 06209cam\a2200541\a\4500 001447947 001__ 1447947 001447947 003__ OCoLC 001447947 005__ 20230310004144.0 001447947 006__ m\\\\\o\\d\\\\\\\\ 001447947 007__ cr\un\nnnunnun 001447947 008__ 220709s2022\\\\sz\\\\\\o\\\\\000\0\eng\d 001447947 019__ $$a1333921478 001447947 020__ $$a9783031040399$$q(electronic bk.) 001447947 020__ $$a3031040392$$q(electronic bk.) 001447947 020__ $$z9783031040382 001447947 020__ $$z3031040384 001447947 0247_ $$a10.1007/978-3-031-04039-9$$2doi 001447947 035__ $$aSP(OCoLC)1334106548 001447947 040__ $$aEBLCP$$beng$$epn$$cEBLCP$$dGW5XE$$dYDX$$dEBLCP$$dSFB$$dOCLCF$$dOCLCQ$$dUKAHL$$dOCLCQ 001447947 049__ $$aISEA 001447947 050_4 $$aRC267 001447947 08204 $$a616.99/40072$$223/eng/20220712 001447947 24500 $$aMicrofluidics and biosensors in cancer research :$$bapplications in cancer modeling and theranostics /$$cDavid Caballero, Subhas C. Kundu, Rui L. Reis, editors. 001447947 260__ $$aCham :$$bSpringer,$$c2022. 001447947 300__ $$a1 online resource (598 pages) 001447947 336__ $$atext$$btxt$$2rdacontent 001447947 337__ $$acomputer$$bc$$2rdamedia 001447947 338__ $$aonline resource$$bcr$$2rdacarrier 001447947 4901_ $$aAdvances in experimental medicine and biology ;$$vv. 1379 001447947 5050_ $$aPart 1. Fundamentals of Microfluidics and Biosensors -- Chapter 1. Fundamentals of Biosensors and Detection Methods -- Chapter 2. How to Get Away with Gradients -- Chapter 3. Sensors and Biosensors in Organs-on-a-chip Platforms -- Chapter 4. Current Trends in Microfluidics and Biosensors for Cancer Research Applications -- Part 2. Modelling the Tumor Microenvironment and Its Dynamic Events -- Chapter 5. The Tumor Microenvironment an Introduction for the Development of Microfluidic Devices -- Chapter 6. Biomaterials for Mimicking and Modelling Tumor Micro-environment -- Chapter 7. Advancing Tumor Microenvironment Research by Combining Organs-on-chips and Biosensors -- Chapter 8. Microfluidic-driven Biofabrication and the Engineering of Cancer-like Microenvironments -- Chapter 9. Advances in 3d Vascularized Tumor-on-a-chip Technology -- Part 3. Cancer Detection and Diagnosis -- Chapter 10. Biosensors Advances: Contributions to Cancer Diagnostics and Treatment -- Chapter 11. Flexible Sensing Systems for Cancer Diagnostics -- Chapter 12. Coupling Micro-physiological Systems and Biosensors for Improving Cancer Biomarkers Detection -- Chapter 13. Microfluidic Biosensor-based Devices for Rapid Diagnosis and Effective Anti-cancer Therapeutic Monitoring for Breast Cancer Metastasis -- Chapter 14. Liquid Biopsies: Flowing Biomarkers -- Chapter 15. From Exosomes to Circulating Tumor Cells: Using Microfludics to Detect High Predictive Cancer Biomarkers -- Chapter 16. Microfluidics for the Isolation and Detection of Circulating Tumor Cells -- Chapter 17. Evolution in Automatized Detection of Cancer Cells: Advances in Magnetic Microcytometers -- Chapter 18. Droplet-based Microfluidic Chip Design, Fabrication and Use for Ultrahigh-throughput DNA Analysis and Quantification -- Chapter 19. Emerging Microfluidic and Biosensor Technologies for Improved Cancer Theranostics -- Part 4. Clinical Applications: Towards Personalized Medicine -- Chapter 20. Microfluidics for Cancer Biomarker Discovery, Research and Clinical Application -- Chapter 21. Methods for the Detection of Circulating Biomarkers in Cancer Patients -- Chapter 22. Advances in Microfluidics for the Implementation of Liquid Biopsy in Clinical Routine. 001447947 506__ $$aAccess limited to authorized users. 001447947 520__ $$aThis book offers a comprehensive overview of the development and application of microfluidics and biosensors in cancer research, in particular, their applications in cancer modeling and theranostics. Over the last decades, considerable effort has been made to develop new technologies to improve the diagnosis and treatment of cancer. Microfluidics has proven to be a powerful tool for manipulating biological fluids with high precision and efficiency and has already been adopted by the pharmaceutical and biotechnology industries. With recent technological advances, particularly biosensors, microfluidic devices have increased their usefulness and importance in oncology and cancer research. The aim of this book is to bring together in a single volume all the knowledge and expertise required for the development and application of microfluidic systems and biosensors in cancer modeling and theranostics. It begins with a detailed introduction to the fundamental aspects of tumor biology, cancer biomarkers, biosensors and microfluidics. With this knowledge in mind, the following sections highlight important advances in developing and applying biosensors and microfluidic devices in cancer research at universities and in the industry. Strategies for identifying and evaluating potent disease biomarkers and developing biosensors and microfluidic devices for their detection are discussed in detail. Finally, the transfer of these technologies into the clinical environment for the diagnosis and treatment of cancer patients will be highlighted. By combining the recent advances made in the development and application of microfluidics and biosensors in cancer research in academia and clinics, this book will be useful literature for readers from a variety of backgrounds. It offers new visions of how this technology can influence daily life in hospitals and companies, improving research methodologies and the prognosis of cancer patients. 001447947 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed July 12, 2022). 001447947 650_0 $$aCancer$$xResearch. 001447947 650_0 $$aMicrofluidics. 001447947 650_0 $$aBiosensors. 001447947 655_0 $$aElectronic books. 001447947 7001_ $$aCaballero, David. 001447947 7001_ $$aKundu, S. C.$$q(Subhas Chandra) 001447947 7001_ $$aReis, Rui L. 001447947 77608 $$iPrint version:$$aCaballero, David.$$tMicrofluidics and Biosensors in Cancer Research.$$dCham : Springer International Publishing AG, ©2022$$z9783031040382 001447947 830_0 $$aAdvances in experimental medicine and biology ;$$vv. 1379. 001447947 852__ $$bebk 001447947 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-031-04039-9$$zOnline Access$$91397441.1 001447947 909CO $$ooai:library.usi.edu:1447947$$pGLOBAL_SET 001447947 980__ $$aBIB 001447947 980__ $$aEBOOK 001447947 982__ $$aEbook 001447947 983__ $$aOnline 001447947 994__ $$a92$$bISE