001448100 000__ 05369cam\a2200577Ii\4500 001448100 001__ 1448100 001448100 003__ OCoLC 001448100 005__ 20230310004221.0 001448100 006__ m\\\\\o\\d\\\\\\\\ 001448100 007__ cr\cn\nnnunnun 001448100 008__ 220712s2022\\\\si\a\\\\ob\\\\000\0\eng\d 001448100 020__ $$a9789811389146$$q(electronic bk.) 001448100 020__ $$a9811389144$$q(electronic bk.) 001448100 020__ $$z9789811389139 001448100 020__ $$z9811389136 001448100 0247_ $$a10.1007/978-981-13-8914-6$$2doi 001448100 035__ $$aSP(OCoLC)1335118817 001448100 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dEBLCP$$dOCLCQ 001448100 049__ $$aISEA 001448100 050_4 $$aTK2941 001448100 08204 $$a621.31/24240284$$223/eng/20220712 001448100 1001_ $$aYoon, Gabin,$$eauthor. 001448100 24510 $$aTheoretical study on graphite and lithium metal as anode materials for next-generation rechargeable batteries /$$cGabin Yoon. 001448100 264_1 $$aSingapore :$$bSpringer,$$c[2022] 001448100 264_4 $$c©2022 001448100 300__ $$a1 online resource :$$billustrations (some color). 001448100 336__ $$atext$$btxt$$2rdacontent 001448100 337__ $$acomputer$$bc$$2rdamedia 001448100 338__ $$aonline resource$$bcr$$2rdacarrier 001448100 4901_ $$aSpringer theses 001448100 500__ $$a"Doctoral thesis accepted by Seoul National University, Seoul, South Korea." 001448100 504__ $$aIncludes bibliographical references. 001448100 5050_ $$a1 Introduction -- 1.1 Demands for energy storage system -- 1.2 Li-ion batteries -- 1.3 Post Li-ion batteries -- 1.3.1 Na-ion batteries -- 1.3.2 Li metal batteries -- 1.4 References -- 2 Na intercalation chemistry in graphite -- 2.1 Introduction -- 2.2 Experimental and computational details -- 2.2.1 Materials -- 2.2.2 Electrode preparation and electrochemical measurements -- 2.2.3 Operando XRD analysis -- 2.2.4 Computational details -- 2.3 Staging behavior upon Na-solvent co-intercalation -- 2.4 Na-solvent co-intercalation into graphite structure -- 2.5 Solvent dependency on electrochemical properties -- 2.6 Conclusions -- 2.7 References -- 3 Conditions for reversible Na intercalation in graphite -- 3.1 Introduction -- 3.2 Computational details -- 3.3 Unstable Na intercalation in graphite -- 3.3.1 Destabilization energy of metal reconstruction -- 3.3.2 Destabilization energy of graphite framework upon intercalation -- 3.3.3 Local interaction between alkali metal ions and the graphite framework -- 3.3.4 Mitigating the unfavorable local interaction between Na and graphene layers -- 3.4 Conditions of solvents for reversible Na intercalation into graphite -- 3.4.1 Solvent dependency on reversible Na-solvent co-intercalation behavior -- 3.4.2 Thermodynamic stability of Na-solvent complex -- 3.4.3 Chemical stability of Na-solvent complex -- 3.4.4 Unified picture of Na-solvent co-intercalation behavior -- 3.5 Conclusions -- 3.6 References -- 4 Electrochemical deposition and stripping behavior of Li metal -- 4.1 Introduction -- 4.2 Computational details -- 4.3 Effect of deposition rate -- 4.4 Effect of surface geometry -- 4.5 Implications of SEI layer properties -- 4.6 Consequences of the history of deposition and stripping -- 4.7 Conclusions -- 4.8 References. . 001448100 506__ $$aAccess limited to authorized users. 001448100 520__ $$aThis thesis describes in-depth theoretical efforts to understand the reaction mechanism of graphite and lithium metal as anodes for next-generation rechargeable batteries. The first part deals with Na intercalation chemistry in graphite, whose understanding is crucial for utilizing graphite as an anode for Na-ion batteries. The author demonstrates that Na ion intercalation in graphite is thermodynamically unstable because of the unfavorable Na-graphene interaction. To address this issue, the inclusion of screening moieties, such as solvents, is suggested and proven to enable reversible Na-solvent cointercalation in graphite. Furthermore, the author provides the correlation between the intercalation behavior and the properties of solvents, suggesting a general strategy to tailor the electrochemical intercalation chemistry. The second part addresses the Li dendrite growth issue, which is preventing practical application of Li metal anodes. A continuum mechanics study considering various experimental conditions reveals the origins of irregular growth of Li metal. The findings provide crucial clues for developing effective counter strategies to control the Li metal growth, which will advance the application of high-energy-density Li metal anodes. 001448100 588__ $$aDescription based on print version record. 001448100 650_0 $$aStorage batteries$$xMaterials. 001448100 650_0 $$aGraphite$$xIndustrial applications. 001448100 650_0 $$aLithium$$xIndustrial applications. 001448100 650_6 $$aAccumulateurs$$0(CaQQLa)201-0000170$$xMatériaux.$$0(CaQQLa)201-0379329 001448100 650_6 $$aGraphite$$0(CaQQLa)201-0026482$$xApplications industrielles.$$0(CaQQLa)201-0374039 001448100 650_6 $$aLithium$$0(CaQQLa)201-0025374$$xApplications industrielles.$$0(CaQQLa)201-0374039 001448100 655_0 $$aElectronic books. 001448100 77608 $$iPrint version:$$aYoon, Gabin.$$tTheoretical study on graphite and lithium metal as anode materials for next-generation rechargeable batteries.$$dSingapore : Springer, 2022$$z9789811389139$$w(OCoLC)1308488161 001448100 830_0 $$aSpringer theses. 001448100 852__ $$bebk 001448100 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-981-13-8914-6$$zOnline Access$$91397441.1 001448100 909CO $$ooai:library.usi.edu:1448100$$pGLOBAL_SET 001448100 980__ $$aBIB 001448100 980__ $$aEBOOK 001448100 982__ $$aEbook 001448100 983__ $$aOnline 001448100 994__ $$a92$$bISE