001448688 000__ 05243cam\a2200577\i\4500 001448688 001__ 1448688 001448688 003__ OCoLC 001448688 005__ 20230310004251.0 001448688 006__ m\\\\\o\\d\\\\\\\\ 001448688 007__ cr\cn\nnnunnun 001448688 008__ 220814s2022\\\\sz\a\\\\ob\\\\000\0\eng\d 001448688 019__ $$a1340958696 001448688 020__ $$a9783031098956$$q(electronic bk.) 001448688 020__ $$a3031098951$$q(electronic bk.) 001448688 020__ $$z9783031098949 001448688 020__ $$z3031098943 001448688 0247_ $$a10.1007/978-3-031-09895-6$$2doi 001448688 035__ $$aSP(OCoLC)1340946157 001448688 040__ $$aYDX$$beng$$erda$$epn$$cYDX$$dGW5XE$$dEBLCP$$dOCLCF$$dN$T$$dUKAHL$$dOCLCQ 001448688 049__ $$aISEA 001448688 050_4 $$aQC178 001448688 08204 $$a539.7/54$$223/eng/20220819 001448688 1001_ $$aMusser, George,$$eauthor. 001448688 24510 $$aEmergence in condensed matter and quantum gravity :$$ba nontechnical review /$$cGeorge Musser. 001448688 264_1 $$aCham :$$bSpringer,$$c[2022] 001448688 264_4 $$c©2022 001448688 300__ $$a1 online resource (xiii, 95 pages) :$$billustrations (some color). 001448688 336__ $$atext$$btxt$$2rdacontent 001448688 337__ $$acomputer$$bc$$2rdamedia 001448688 338__ $$aonline resource$$bcr$$2rdacarrier 001448688 4901_ $$aSpringerBriefs in physics 001448688 504__ $$aIncludes bibliographical references. 001448688 5050_ $$aIntro -- Acknowledgements -- Contents -- About the Author -- 1 Introduction -- 1.1 What is Emergence? -- 1.2 Is Emergence Fundamental? -- 1.3 Weak Versus Strong Emergence -- References -- 2 Emergence in Condensed Matter Physics -- 2.1 Introduction -- 2.1.1 Just a Phase They're Going Through-Landau's Theory of Phase Transitions -- 2.1.2 Tipping the Scales -- 2.1.3 Non-equilibrium Phases of Matter -- 2.2 Soft Matter -- 2.3 Quantum Phases of Matter -- 2.3.1 Quantum Physics -- 2.3.2 Frozen yet Mobile-Superconductors, Bose-Einstein Condensates, and Strange Metals -- 2.3.3 Critical Symmetry 001448688 5058_ $$a2.3.4 "Twistronics"-Graphene's Magic Angle -- 2.4 Topological Phases of Matter -- 2.4.1 The Hall Effects -- 2.4.2 Topological Insulators and Topological Nanomaterials -- 2.4.3 Hunting for New Topological Materials-Can A.I. Help? -- 2.4.4 Entangled in More Ways Than One-Topological Quantum Computing -- 2.4.5 Topological Inspiration for Other Areas of Science -- 2.5 Condensed Matter and the Unification of Physics-The String-Net-Liquid Model -- References -- 3 Emergence of Space -- 3.1 Introduction-Is Spacetime Doomed? -- 3.1.1 Einstein's Space -- 3.1.2 Hints that Space Is Emergent 001448688 5058_ $$a3.1.2.1 The Black-Hole Information Paradox -- 3.1.2.2 Quantum Entanglement -- 3.2 Space from Entanglement -- 3.2.1 The Universe as a Hologram-The AdS/CFT Duality -- 3.2.2 Why Entanglement? -- 3.2.3 How Entanglement Reproduces Space -- 3.2.4 Space as Error Correction -- 3.2.4.1 The Causal Wedge Paradox -- 3.2.4.2 Modeling Emergence with Qubits -- 3.3 Black Holes -- 3.3.1 Down the Wormhole-Resolving the Black-Hole Information Paradox -- 3.3.2 Island Rule -- 3.3.3 Complexity and Black Holes -- 3.3.4 Testing Emergence in the Lab: Black Hole Scrambling -- 3.4 Extending Duality 001448688 5058_ $$a3.4.1 Going Beyond AdS/CFT -- 3.4.2 Loop Quantum Gravity -- 3.4.3 Causal Sets -- 3.4.4 Causal Dynamical Triangulations -- References -- 4 Lateral Thinking-The Holographic Principle in Condensed Matter -- 4.1 Introduction -- 4.2 Dualing Theories -- 4.2.1 Nuclear Plasmas and Holography -- 4.2.2 Quantum Phases and Holography -- 4.3 The SYK Model-Creating Spacetime from Particles -- References 001448688 506__ $$aAccess limited to authorized users. 001448688 520__ $$aThis book surveys the science at a semipopular, Scientific American-level. It is even-handed with regard to competing directions of research and philosophical positions. It is hard to get even two people to agree on anything, yet a million billion water molecules can suddenly and abruptly coordinate to lock themselves into an ice crystal or liberate one another to billow outwards as steam. The marvelous self-organizing capacity of matter is one of the central and deepest puzzles of physics, with implications for all the natural sciences. Physicists in the past century have found a remarkable diversity of phases of matterand equally remarkable commonalities within that diversity. The pace of discovery has, if anything, only quickened in recent years with the appreciation of quantum phases of matter and so-called topological order. The study of seemingly humdrum materials has made contact with the more exotic realm of quantum gravity, as theorists realize that the spacetime continuum may itself be a phase of some deeper and still unknown constituents. These developments flesh out the sometimes vague concept of the emergencehow exactly it is that complexity begets simplicity. 001448688 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed August 19, 2022). 001448688 650_0 $$aQuantum gravity. 001448688 650_0 $$aCondensed matter. 001448688 650_0 $$aTopological insulators. 001448688 655_0 $$aElectronic books. 001448688 77608 $$iPrint version:$$z3031098943$$z9783031098949$$w(OCoLC)1322811419 001448688 830_0 $$aSpringerBriefs in physics. 001448688 852__ $$bebk 001448688 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-031-09895-6$$zOnline Access$$91397441.1 001448688 909CO $$ooai:library.usi.edu:1448688$$pGLOBAL_SET 001448688 980__ $$aBIB 001448688 980__ $$aEBOOK 001448688 982__ $$aEbook 001448688 983__ $$aOnline 001448688 994__ $$a92$$bISE