001449131 000__ 03714cam\a2200517\i\4500 001449131 001__ 1449131 001449131 003__ OCoLC 001449131 005__ 20230310004344.0 001449131 006__ m\\\\\o\\d\\\\\\\\ 001449131 007__ cr\cn\nnnunnun 001449131 008__ 220902s2022\\\\gw\a\\\\ob\\\\000\0\eng\d 001449131 019__ $$a1343250965 001449131 020__ $$a9783658386979$$q(electronic bk.) 001449131 020__ $$a3658386975$$q(electronic bk.) 001449131 020__ $$z9783658386962 001449131 020__ $$z3658386967 001449131 0247_ $$a10.1007/978-3-658-38697-9$$2doi 001449131 035__ $$aSP(OCoLC)1343120891 001449131 040__ $$aYDX$$beng$$erda$$epn$$cYDX$$dGW5XE$$dEBLCP$$dN$T$$dBRX$$dOCLCF$$dOCLCQ 001449131 049__ $$aISEA 001449131 050_4 $$aQA76.9.N38 001449131 08204 $$a006.3/5$$223/eng/20220915 001449131 1001_ $$aNiklaus, Christina,$$eauthor. 001449131 24510 $$aFrom complex sentences to a formal sematic representation using syntactic text simplification and open information extraction /$$cChristina Niklaus. 001449131 264_1 $$aWiesbaden :$$bSpringer Vieweg,$$c[2022] 001449131 264_4 $$c©2022 001449131 300__ $$a1 online resource (xli, 318 pages) :$$billustrations (some color) 001449131 336__ $$atext$$btxt$$2rdacontent 001449131 337__ $$acomputer$$bc$$2rdamedia 001449131 338__ $$aonline resource$$bcr$$2rdacarrier 001449131 504__ $$aIncludes bibliographical references. 001449131 5050_ $$aBackground -- Discourse-Aware Sentence Splitting -- Open Information Extraction -- Evaluation -- Conclusion. 001449131 506__ $$aAccess limited to authorized users. 001449131 520__ $$aThis work presents a discourse-aware Text Simplification approach that splits and rephrases complex English sentences within the semantic context in which they occur. Based on a linguistically grounded transformation stage, complex sentences are transformed into shorter utterances with a simple canonical structure that can be easily analyzed by downstream applications. To avoid breaking down the input into a disjointed sequence of statements that is difficult to interpret, the author incorporates the semantic context between the split propositions in the form of hierarchical structures and semantic relationships, thus generating a novel representation of complex assertions that puts a semantic layer on top of the simplified sentences. In a second step, she leverages the semantic hierarchy of minimal propositions to improve the performance of Open IE frameworks. She shows that such systems benefit in two dimensions. First, the canonical structure of the simplified sentences facilitates the extraction of relational tuples, leading to an improved precision and recall of the extracted relations. Second, the semantic hierarchy can be leveraged to enrich the output of existing Open IE approaches with additional meta-information, resulting in a novel lightweight semantic representation for complex text data in the form of normalized and context-preserving relational tuples. About the author Christina Niklaus is an Assistant Professor in Computer Science at the University of St.Gallen with a focus on Data Science and NLP. . 001449131 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed September 15, 2022). 001449131 650_0 $$aNatural language processing (Computer science) 001449131 650_0 $$aText processing (Computer science) 001449131 650_0 $$aComputational linguistics. 001449131 655_0 $$aElectronic books. 001449131 77608 $$iPrint version:$$aNIKLAUS, CHRISTINA.$$tFROM COMPLEX SENTENCES TO A FORMAL SEMANTIC REPRESENTATION USING SYNTACTIC TEXT... SIMPLIFICATION AND OPEN INFORMATION EXTRACTION.$$d[S.l.] : SPRINGER VIEWEG, 2022$$z3658386967$$w(OCoLC)1334719579 001449131 852__ $$bebk 001449131 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-658-38697-9$$zOnline Access$$91397441.1 001449131 909CO $$ooai:library.usi.edu:1449131$$pGLOBAL_SET 001449131 980__ $$aBIB 001449131 980__ $$aEBOOK 001449131 982__ $$aEbook 001449131 983__ $$aOnline 001449131 994__ $$a92$$bISE