001449484 000__ 03651cam\a2200601\i\4500 001449484 001__ 1449484 001449484 003__ OCoLC 001449484 005__ 20230310004402.0 001449484 006__ m\\\\\o\\d\\\\\\\\ 001449484 007__ cr\un\nnnunnun 001449484 008__ 220913s2022\\\\sz\a\\\\o\\\\\101\0\eng\d 001449484 019__ $$a1344158219 001449484 020__ $$a9783031159343$$q(electronic bk.) 001449484 020__ $$a3031159349$$q(electronic bk.) 001449484 020__ $$z9783031159336 001449484 0247_ $$a10.1007/978-3-031-15934-3$$2doi 001449484 035__ $$aSP(OCoLC)1344334551 001449484 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dEBLCP$$dOCLCF$$dOCLCQ$$dUKAHL 001449484 049__ $$aISEA 001449484 050_4 $$aQA76.87 001449484 08204 $$a006.3/2$$223/eng/20220913 001449484 1112_ $$aInternational Conference on Artificial Neural Networks (European Neural Network Society)$$n(31st :$$d2022 :$$cBristol, England ; Online) 001449484 24510 $$aArtificial neural networks and machine learning -- ICANN 2022 :$$b31st International Conference on Artificial Neural Networks, Bristol, UK, September 6-9, 2022, Proceedings.$$nPart III /$$cElias Pimenidis, Plamen Angelov, Chrisina Jayne, Antonios Papaleonidas, Mehmet Aydin (eds.). 001449484 2463_ $$aICANN 2022 001449484 264_1 $$aCham, Switzerland :$$bSpringer,$$c2022. 001449484 300__ $$a1 online resource (xxii, 813 pages) :$$billustrations. 001449484 336__ $$atext$$btxt$$2rdacontent 001449484 337__ $$acomputer$$bc$$2rdamedia 001449484 338__ $$aonline resource$$bcr$$2rdacarrier 001449484 4901_ $$aLecture notes in computer science,$$x1611-3349 ;$$v13531 001449484 500__ $$aIncludes author index. 001449484 5050_ $$aDeep Learning -- Neural Network Theory -- Relational Learning, Reinforcement Learning -- Natural language processing, Generative Models -- Graphical Models, Recommender Systems -- Image Processing, Recurrent Networks -- Evolutionary Neural Networks -- Unsupervised Neural Networks -- Neural Network Models. 001449484 506__ $$aAccess limited to authorized users. 001449484 520__ $$aThe 4-volumes set of LNCS 13529, 13530, 13531, and 13532 constitutes the proceedings of the 31st International Conference on Artificial Neural Networks, ICANN 2022, held in Bristol, UK, in September 2022. The total of 255 full papers presented in these proceedings was carefully reviewed and selected from 561 submissions. ICANN 2022 is a dual-track conference featuring tracks in brain inspired computing and machine learning and artificial neural networks, with strong cross-disciplinary interactions and applications. 001449484 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed September 13, 2022). 001449484 650_0 $$aNeural networks (Computer science)$$vCongresses. 001449484 650_0 $$aMachine learning$$vCongresses. 001449484 650_0 $$aArtificial intelligence$$vCongresses. 001449484 655_0 $$aElectronic books. 001449484 655_7 $$aConference papers and proceedings.$$2fast$$0(OCoLC)fst01423772 001449484 7001_ $$aPimenidis, Elias,$$eeditor.$$1https://orcid.org/0000-0003-3593-8640 001449484 7001_ $$aAngelov, Plamen P.,$$eeditor.$$1https://orcid.org/0000-0002-5770-934X 001449484 7001_ $$aJayne, Chrisina,$$eeditor.$$1https://orcid.org/0000-0001-7292-2109 001449484 7001_ $$aPapaleonidas, Antonios,$$eeditor.$$0(orcid)0000-0002-0545-7638$$1https://orcid.org/0000-0002-0545-7638 001449484 7001_ $$aAydin, M. E.$$q(Mehmet E.),$$eeditor.$$1https://orcid.org/0000-0002-4890-5648 001449484 77608 $$iPrint version:$$aPimenidis, Elias$$tArtificial Neural Networks and Machine Learning - ICANN 2022$$dCham : Springer,c2022$$z9783031159336 001449484 830_0 $$aLecture notes in computer science ;$$v13531.$$x1611-3349 001449484 852__ $$bebk 001449484 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-031-15934-3$$zOnline Access$$91397441.1 001449484 909CO $$ooai:library.usi.edu:1449484$$pGLOBAL_SET 001449484 980__ $$aBIB 001449484 980__ $$aEBOOK 001449484 982__ $$aEbook 001449484 983__ $$aOnline 001449484 994__ $$a92$$bISE