Essays in constructive mathematics / Harold M. Edwards.
2022
QA9.56
Linked e-resources
Linked Resource
Concurrent users
Unlimited
Authorized users
Authorized users
Document Delivery Supplied
Can lend chapters, not whole ebooks
Details
Title
Essays in constructive mathematics / Harold M. Edwards.
Author
Edition
Second edition.
ISBN
9783030985585 (electronic bk.)
303098558X (electronic bk.)
9783030985578
3030985571
303098558X (electronic bk.)
9783030985578
3030985571
Published
Cham, Switzerland : Springer, 2022.
Language
English
Description
1 online resource (xiv, 322 pages) : illustrations (some color)
Item Number
10.1007/978-3-030-98558-5 doi
Call Number
QA9.56
Dewey Decimal Classification
511.3
Summary
This collection of essays aims to promote constructive mathematics, not by defining it or formalizing it, but by practicing it. All definitions and proofs are based on finite algorithms, which pave illuminating paths to nontrivial results, primarily in algebra, number theory, and the theory of algebraic curves. The second edition adds a new set of essays that reflect and expand upon the first. The topics covered derive from classic works of nineteenth-century mathematics, among them Galois's theory of algebraic equations, Gauss's theory of binary quadratic forms, and Abel's theorems about integrals of rational differentials on algebraic curves. Other topics include Newton's diagram, the fundamental theorem of algebra, factorization of polynomials over constructive fields, and the spectral theorem for symmetric matrices, all treated using constructive methods in the spirit of Kronecker. In this second edition, the essays of the first edition are augmented with new essays that give deeper and more complete accounts of Galois's theory, points on an algebraic curve, and Abel's theorem. Readers will experience the full power of Galois's approach to solvability by radicals, learn how to construct points on an algebraic curve using Newton's diagram, and appreciate the amazing ideas introduced by Abel in his 1826 Paris memoir on transcendental functions. Mathematical maturity is required of the reader, and some prior knowledge of Galois theory is helpful. But experience with constructive mathematics is not necessary; readers should simply be willing to set aside abstract notions of infinity and explore deep mathematics via explicit constructions.
Bibliography, etc. Note
Incldues bibliographical references and index.
Access Note
Access limited to authorized users.
Source of Description
Online resource; title from PDF title page (SpringerLink, viewed October 7, 2022).
Available in Other Form
Print version: 9783030985578
Linked Resources
Record Appears in
Table of Contents
Part I
1. A Fundamental Theorem
2. Topics in Algebra
3. Some Quadratic Problems
4. The Genus of an Algebraic Curve
5. Miscellany. Part II
6. Constructive Algebra
7. The Algorithmic Foundation of Galois's Theory
8. A Constructive Definition of Points on an Algebraic Curve
9. Abel's Theorem.
1. A Fundamental Theorem
2. Topics in Algebra
3. Some Quadratic Problems
4. The Genus of an Algebraic Curve
5. Miscellany. Part II
6. Constructive Algebra
7. The Algorithmic Foundation of Galois's Theory
8. A Constructive Definition of Points on an Algebraic Curve
9. Abel's Theorem.