001450096 000__ 06250cam\a2200649\i\4500 001450096 001__ 1450096 001450096 003__ OCoLC 001450096 005__ 20230310004508.0 001450096 006__ m\\\\\o\\d\\\\\\\\ 001450096 007__ cr\cn\nnnunnun 001450096 008__ 221009s2022\\\\sz\a\\\\o\\\\\101\0\eng\d 001450096 019__ $$a1347026314 001450096 020__ $$a9783031061707$$q(electronic bk.) 001450096 020__ $$a3031061705$$q(electronic bk.) 001450096 020__ $$z9783031061691 001450096 020__ $$z3031061691 001450096 0247_ $$a10.1007/978-3-031-06170-7$$2doi 001450096 035__ $$aSP(OCoLC)1347020111 001450096 040__ $$aYDX$$beng$$erda$$epn$$cYDX$$dGW5XE$$dEBLCP$$dOCLCQ 001450096 049__ $$aISEA 001450096 050_4 $$aQC174.85.P76 001450096 08204 $$a530.1201/5192$$223/eng/20221017 001450096 1112_ $$aInternational Conference on Infinite Dimensional Analysis, Quantum Probability and Related Topics$$n(41st :$$d2021 :$$cOnline). 001450096 24510 $$aInfinite dimensional analysis, quantum probability and applications :$$bQP41 Conference, Al Ain, UAE, March 28-April 1, 2021 /$$cLuigi Accardi, Farrukh Mukhamedov, Ahmed Al Rawashdeh, editors. 001450096 24630 $$aQP41 Conference 001450096 264_1 $$aCham :$$bSpringer,$$c[2022] 001450096 264_4 $$c©2022 001450096 300__ $$a1 online resource (xiii, 378 pages) :$$billustrations (some color). 001450096 336__ $$atext$$btxt$$2rdacontent 001450096 337__ $$acomputer$$bc$$2rdamedia 001450096 338__ $$aonline resource$$bcr$$2rdacarrier 001450096 4901_ $$aSpringer proceedings in mathematics & statistics ;$$vvolume 390 001450096 500__ $$aInternational conference proceedings. 001450096 500__ $$aIncludes author index. 001450096 5050_ $$aIntro -- Organization -- Preface -- Contents -- Part I Quantum Probability Methods -- The Non-linear and Quadratic Quantization Programs -- 1 Introduction -- 1.1 Quadratic Quantization -- 2 Some Properties of *-Lie Algebras -- 2.1 The Complex d-Dimensional Heisenberg Algebra: heis1,d(0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900) -- 2.2 The Complex d-Dimensional Quadratic Heisenberg Algebra heis2,d(0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900) -- 3 The Symplectic Approach to Homogeneous Quadratic Boson Fields 001450096 5058_ $$a3.1 The *-Lie Algebra of Homogeneous Quadratic Boson Fields -- 3.2 Identification of the *-Lie Algebra of Homogeneous Quadratic Boson Fields with heis2,d(0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900) -- 3.3 Central Decomposition of heis2,d(0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900): heis2,d,cls(0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900) -- 4 The Complex Symplectic *-Lie Algebra sp(2d, 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900) 001450096 5058_ $$a4.1 The Involution on sp(2d, 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900) : sp(2d, 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900) -- 4.2 *-Isomorphism Between heis2,d, cls(0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900) and sp(2d,0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900) -- 4.3 The Isomorphism Between heis2,d(0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900) and sp(2d, 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900) : Direct Proof 001450096 5058_ $$a5 Real Lie Sub-algebras of heis2,d(0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900) and spskew,(2d,0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900) -- 5.1 Real *-Lie Algebra-Isomorphism Between spskew,(2d,0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900) and sp-(2d,IR) -- 6 Vacuum Averages -- 7 Lie Groups Associated with the Symplectic Algebra -- 7.1 The Siegel Unit Disk -- 7.2 The Metaplectic Group -- 7.3 The Abstract Symplectic Algebra and Its Lie Groups -- 8 The Problems of Diagonalizability and Vacuum Factorizability 001450096 506__ $$aAccess limited to authorized users. 001450096 520__ $$aThis proceedings volume gathers selected, peer-reviewed papers presented at the 41st International Conference on Infinite Dimensional Analysis, Quantum Probability and Related Topics (QP41) that was virtually held at the United Arab Emirates University (UAEU) in Al Ain, Abu Dhabi, from March 28th to April 1st, 2021. The works cover recent developments in quantum probability and infinite dimensional analysis, with a special focus on applications to mathematical physics and quantum information theory. Covered topics include white noise theory, quantum field theory, quantum Markov processes, free probability, interacting Fock spaces, and more. By emphasizing the interconnection and interdependence of such research topics and their real-life applications, this reputed conference has set itself as a distinguished forum to communicate and discuss new findings in truly relevant aspects of theoretical and applied mathematics, notably in the field of mathematical physics, as well as an event of choice for the promotion of mathematical applications that address the most relevant problems found in industry. That makes this volume a suitable reading not only for researchers and graduate students with an interest in the field but for practitioners as well. 001450096 650_0 $$aProbabilities$$vCongresses. 001450096 650_0 $$aQuantum theory$$vCongresses. 001450096 650_0 $$aDimensional analysis$$vCongresses. 001450096 655_7 $$aConference papers and proceedings.$$2fast$$0(OCoLC)fst01423772 001450096 655_7 $$aConference papers and proceedings.$$2lcgft 001450096 655_0 $$aElectronic books. 001450096 7001_ $$aAccardi, L.$$q(Luigi),$$d1947-$$eeditor.$$1https://isni.org/isni/000000011067770X 001450096 7001_ $$aMukhamedov, Farrukh,$$eeditor.$$1https://isni.org/isni/0000000457036573 001450096 7001_ $$aAl Rawashdeh, Ahmed,$$eeditor. 001450096 77608 $$iPrint version:$$aInternational Conference on Infinite Dimensional Analysis, Quantum Probability and Related Topics (41st : 2021 : Online), creator.$$tInfinite dimensional analysis, quantum probability and applications.$$dCham : Springer, 2022$$z9783031061691$$w(OCoLC)1338674305 001450096 830_0 $$aSpringer proceedings in mathematics & statistics ;$$vv.390. 001450096 852__ $$bebk 001450096 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-031-06170-7$$zOnline Access$$91397441.1 001450096 909CO $$ooai:library.usi.edu:1450096$$pGLOBAL_SET 001450096 980__ $$aBIB 001450096 980__ $$aEBOOK 001450096 982__ $$aEbook 001450096 983__ $$aOnline 001450096 994__ $$a92$$bISE