Linked e-resources
Details
Table of Contents
Intro
Organization
Preface
Contents
Part I Quantum Probability Methods
The Non-linear and Quadratic Quantization Programs
1 Introduction
1.1 Quadratic Quantization
2 Some Properties of *-Lie Algebras
2.1 The Complex d-Dimensional Heisenberg Algebra: heis1,d(0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900)
2.2 The Complex d-Dimensional Quadratic Heisenberg Algebra heis2,d(0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900)
3 The Symplectic Approach to Homogeneous Quadratic Boson Fields
3.1 The *-Lie Algebra of Homogeneous Quadratic Boson Fields
3.2 Identification of the *-Lie Algebra of Homogeneous Quadratic Boson Fields with heis2,d(0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900)
3.3 Central Decomposition of heis2,d(0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900): heis2,d,cls(0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900)
4 The Complex Symplectic *-Lie Algebra sp(2d, 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900)
4.1 The Involution on sp(2d, 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900) : sp(2d, 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900)
4.2 *-Isomorphism Between heis2,d, cls(0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900) and sp(2d,0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900)
4.3 The Isomorphism Between heis2,d(0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900) and sp(2d, 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900) : Direct Proof
5 Real Lie Sub-algebras of heis2,d(0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900) and spskew,(2d,0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900)
5.1 Real *-Lie Algebra-Isomorphism Between spskew,(2d,0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900) and sp-(2d,IR)
6 Vacuum Averages
7 Lie Groups Associated with the Symplectic Algebra
7.1 The Siegel Unit Disk
7.2 The Metaplectic Group
7.3 The Abstract Symplectic Algebra and Its Lie Groups
8 The Problems of Diagonalizability and Vacuum Factorizability
Organization
Preface
Contents
Part I Quantum Probability Methods
The Non-linear and Quadratic Quantization Programs
1 Introduction
1.1 Quadratic Quantization
2 Some Properties of *-Lie Algebras
2.1 The Complex d-Dimensional Heisenberg Algebra: heis1,d(0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900)
2.2 The Complex d-Dimensional Quadratic Heisenberg Algebra heis2,d(0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900)
3 The Symplectic Approach to Homogeneous Quadratic Boson Fields
3.1 The *-Lie Algebra of Homogeneous Quadratic Boson Fields
3.2 Identification of the *-Lie Algebra of Homogeneous Quadratic Boson Fields with heis2,d(0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900)
3.3 Central Decomposition of heis2,d(0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900): heis2,d,cls(0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900)
4 The Complex Symplectic *-Lie Algebra sp(2d, 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900)
4.1 The Involution on sp(2d, 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900) : sp(2d, 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900)
4.2 *-Isomorphism Between heis2,d, cls(0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900) and sp(2d,0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900)
4.3 The Isomorphism Between heis2,d(0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900) and sp(2d, 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900) : Direct Proof
5 Real Lie Sub-algebras of heis2,d(0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900) and spskew,(2d,0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900)
5.1 Real *-Lie Algebra-Isomorphism Between spskew,(2d,0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900 0=Ctoheight0.900) and sp-(2d,IR)
6 Vacuum Averages
7 Lie Groups Associated with the Symplectic Algebra
7.1 The Siegel Unit Disk
7.2 The Metaplectic Group
7.3 The Abstract Symplectic Algebra and Its Lie Groups
8 The Problems of Diagonalizability and Vacuum Factorizability