TY - GEN AB - This monograph provides a state-of-the-art, self-contained account on the effectiveness of the method of boundary layer potentials in the study of elliptic boundary value problems with boundary data in a multitude of function spaces. Many significant new results are explored in detail, with complete proofs, emphasizing and elaborating on the link between the geometric measure-theoretic features of an underlying surface and the functional analytic properties of singular integral operators defined on it. Graduate students, researchers, and professionals interested in a modern account of the topic of singular integral operators and boundary value problems as well as those more generally interested in harmonic analysis, PDEs, and geometric analysis will find this text to be a valuable addition to the mathematical literature. AU - Marín, Juan José, AU - Martell, José Maria, AU - Mitrea, Dorina, AU - Mitrea, Irina, AU - Mitrea, Marius, CN - QA379 DO - 10.1007/978-3-031-08234-4 DO - doi ID - 1450199 KW - Boundary value problems. KW - Singular integrals. LK - https://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-031-08234-4 N2 - This monograph provides a state-of-the-art, self-contained account on the effectiveness of the method of boundary layer potentials in the study of elliptic boundary value problems with boundary data in a multitude of function spaces. Many significant new results are explored in detail, with complete proofs, emphasizing and elaborating on the link between the geometric measure-theoretic features of an underlying surface and the functional analytic properties of singular integral operators defined on it. Graduate students, researchers, and professionals interested in a modern account of the topic of singular integral operators and boundary value problems as well as those more generally interested in harmonic analysis, PDEs, and geometric analysis will find this text to be a valuable addition to the mathematical literature. SN - 9783031082344 SN - 3031082346 T1 - Singular integral operators, quantitative flatness, and boundary problems / TI - Singular integral operators, quantitative flatness, and boundary problems / UR - https://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-031-08234-4 VL - volume 344 ER -