001451210 000__ 06357cam\a2200601\i\4500 001451210 001__ 1451210 001451210 003__ OCoLC 001451210 005__ 20230310004648.0 001451210 006__ m\\\\\o\\d\\\\\\\\ 001451210 007__ cr\cn\nnnunnun 001451210 008__ 221115s2022\\\\sz\a\\\\o\\\\\101\0\eng\d 001451210 020__ $$a9783031200779$$q(electronic bk.) 001451210 020__ $$a3031200772$$q(electronic bk.) 001451210 020__ $$z9783031200762 001451210 020__ $$z3031200764 001451210 0247_ $$a10.1007/978-3-031-20077-9$$2doi 001451210 035__ $$aSP(OCoLC)1350794667 001451210 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dSFB$$dOCLCF$$dOCLCQ$$dUKAHL 001451210 049__ $$aISEA 001451210 050_4 $$aTA1634 001451210 08204 $$a006.3/7$$223/eng/20221115 001451210 1112_ $$aEuropean Conference on Computer Vision$$n(17th :$$d2022 :$$cTel Aviv, Israel) 001451210 24510 $$aComputer vision -- ECCV 2022 :$$b17th European Conference, Tel Aviv, Israel, October 23-27, 2022 : proceedings.$$nPart IX /$$cShai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, Tal Hassner (eds.). 001451210 2463_ $$aECCV 2022 001451210 264_1 $$aCham :$$bSpringer,$$c2022. 001451210 300__ $$a1 online resource :$$billustrations (black and white). 001451210 336__ $$atext$$btxt$$2rdacontent 001451210 337__ $$acomputer$$bc$$2rdamedia 001451210 338__ $$aonline resource$$bcr$$2rdacarrier 001451210 4901_ $$aLecture notes in computer science ;$$v13669 001451210 500__ $$aSelected conference papers. 001451210 500__ $$aIncludes author index. 001451210 5050_ $$aBEVFormer: Learning Birds-Eye-View Representation from Multi-Camera Images via Spatiotemporal Transformers -- Category-Level 6D Object Pose and Size Estimation Using Self-Supervised Deep Prior Deformation Networks -- Dense Teacher: Dense Pseudo-Labels for Semi-Supervised Object Detection -- Point-to-Box Network for Accurate Object Detection via Single Point Supervision -- Domain Adaptive Hand Keypoint and Pixel Localization in the Wild -- Towards Data-Efficient Detection Transformers -- Open-Vocabulary DETR with Conditional Matching -- Prediction-Guided Distillation for Dense Object Detection -- Multimodal Object Detection via Probabilistic Ensembling -- Exploiting Unlabeled Data with Vision and Language Models for Object Detection -- CPO: Change Robust Panorama to Point Cloud Localization -- INT: Towards Infinite-Frames 3D Detection with an Efficient Framework -- End-to-End Weakly Supervised Object Detection with Sparse Proposal Evolution -- Calibration-Free Multi-View Crowd Counting -- Unsupervised Domain Adaptation for Monocular 3D Object Detection via Self-Training -- SuperLine3D: Self-Supervised Line Segmentation and Description for LiDAR Point Cloud -- Exploring Plain Vision Transformer Backbones for Object Detection -- Adversarially-Aware Robust Object Detector -- HEAD: HEtero-Assists Distillation for Heterogeneous Object Detectors -- You Should Look at All Objects -- Detecting Twenty-Thousand Classes Using Image-Level Supervision -- DCL-Net: Deep Correspondence Learning Network for 6D Pose Estimation -- Monocular 3D Object Detection with Depth from Motion -- DISP6D: Disentangled Implicit Shape and Pose Learning for Scalable 6D Pose Estimation -- Distilling Object Detectors with Global Knowledge -- Unifying Visual Perception by Dispersible Points Learning -- PseCo: Pseudo Labeling and Consistency Training for Semi-Supervised Object Detection -- Exploring Resolution and Degradation Clues As Self-Supervised Signal for Low Quality Object Detection -- Robust Category-Level 6D Pose Estimation with Coarse-to-Fine Rendering of Neural Features -- Translation, Scale and Rotation: Cross-Modal Alignment Meets RGB-Infrared Vehicle Detection -- RFLA: Gaussian Receptive Field Based Label Assignment for Tiny Object Detection -- Rethinking IoU-Based Optimization for Single-Stage 3D Object Detection -- TD-Road: Top-Down Road Network Extraction with Holistic Graph Construction -- Multi-faceted Distillation of Base-Novel Commonality for Few-Shot Object Detection -- PointCLM: A Contrastive Learning-Based Framework for Multi-Instance Point Cloud Registration -- Weakly Supervised Object Localization via Transformer with Implicit Spatial Calibration -- MTTrans: Cross-Domain Object Detection with Mean Teacher Transformer -- Multi-Domain Multi-Definition Landmark Localization for Small Datasets -- DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection -- Label-Guided Auxiliary Training Improves 3D Object Detector -- PromptDet: Towards Open-Vocabulary Detection Using Uncurated Images -- Densely Constrained Depth Estimator for Monocular 3D Object Detection -- Polarimetric Pose Prediction. 001451210 506__ $$aAccess limited to authorized users. 001451210 520__ $$aThe 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 2327, 2022. The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation. 001451210 588__ $$aDescription based on print version record. 001451210 650_0 $$aComputer vision$$vCongresses. 001451210 650_0 $$aPattern recognition systems$$vCongresses. 001451210 655_7 $$aConference papers and proceedings.$$2fast$$0(OCoLC)fst01423772 001451210 655_0 $$aElectronic books. 001451210 7001_ $$aAvidan, Shai,$$eeditor. 001451210 7001_ $$aBrostow, Gabriel,$$eeditor. 001451210 7001_ $$aCissé, Moustapha,$$eeditor. 001451210 7001_ $$aFarinella, Giovanni Maria,$$eeditor.$$1https://isni.org/isni/0000000096390891 001451210 7001_ $$aHassner, Tal,$$eeditor. 001451210 77608 $$iPrint version:$$aEuropean Conference on Computer Vision (17th : 2022 : Tel Aviv, Israel), creator.$$tComputer vision - ECCV 2022 : Part IX.$$dCham : Springer Nature Switzerland, 2022$$z9783031200762$$w(OCoLC)1346936958 001451210 830_0 $$aLecture notes in computer science ;$$v13669. 001451210 852__ $$bebk 001451210 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-031-20077-9$$zOnline Access$$91397441.1 001451210 909CO $$ooai:library.usi.edu:1451210$$pGLOBAL_SET 001451210 980__ $$aBIB 001451210 980__ $$aEBOOK 001451210 982__ $$aEbook 001451210 983__ $$aOnline 001451210 994__ $$a92$$bISE