001451727 000__ 03831cam\a2200541\i\4500 001451727 001__ 1451727 001451727 003__ OCoLC 001451727 005__ 20230310004714.0 001451727 006__ m\\\\\o\\d\\\\\\\\ 001451727 007__ cr\un\nnnunnun 001451727 008__ 221207s2022\\\\si\a\\\\ob\\\\000\0\eng\d 001451727 019__ $$a1353256326 001451727 020__ $$a9789811955303$$q(electronic bk.) 001451727 020__ $$a9811955301$$q(electronic bk.) 001451727 020__ $$z9789811955297 001451727 020__ $$z9811955298 001451727 0247_ $$a10.1007/978-981-19-5530-3$$2doi 001451727 035__ $$aSP(OCoLC)1353606508 001451727 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dYDX$$dOCLCF 001451727 049__ $$aISEA 001451727 050_4 $$aT57.6 001451727 08204 $$a004.2/1$$223/eng/20221207 001451727 1001_ $$aMeng, Deyuan,$$eauthor.$$0(orcid)0000-0002-0990-0166$$1https://orcid.org/0000-0002-0990-0166 001451727 24510 $$aDisagreement behavior analysis of signed networks /$$cDeyuan Meng, Mingjun Du, Yuxin Wu. 001451727 264_1 $$aSingapore :$$bSpringer,$$c2022. 001451727 300__ $$a1 online resource (xi, 228 pages) :$$billustrations (some color). 001451727 336__ $$atext$$btxt$$2rdacontent 001451727 337__ $$acomputer$$bc$$2rdamedia 001451727 338__ $$aonline resource$$bcr$$2rdacarrier 001451727 4901_ $$aIntelligent control and learning systems,$$x2662-5466 ;$$vvolume 5 001451727 504__ $$aIncludes bibliographical references. 001451727 5050_ $$aChapter 1 Overview of signed networks -- Chapter 2 Preliminaries.-Chapter 3 Interval bipartite consensus -- Chapter 4 Bipartite containment tracking -- Chapter 5 Local disagreement characterization -- Chapter 6 Finite/fixed-time bipartite consensus -- Chapter 7 Analysis of dynamic signed networks -- Chapter 8 Analysis of mixed-order signed networks -- Chapter 9 Concluding remarks. 001451727 506__ $$aAccess limited to authorized users. 001451727 520__ $$aThis book investigates the disagreement behavior analysis problems for signed networks in the presence of both cooperative and antagonistic interactions among agents. Owing to the existing antagonistic interactions, signed networks exhibit a variety of disagreement behaviors subject to different topology conditions, especially in comparison with commonly considered unsigned networks involving only cooperative interactions among agents. Since signed networks are generally adopted to describe the dynamics of some practical network systems, they have attracted much attention in many areas, such as biology, sociology, economics, and politics. By focusing on agents with the first-order linear dynamics, the book establishes the systematic behavior analysis frameworks for signed networks, under which diverse disagreement behaviors have been disclosed, including both convergence and fluctuation behaviors, regardless of static or dynamic network topologies. In particular, a class of dynamic signed networks has been introduced, together with the associated dynamic distributed controller design and disagreement behavior analysis of agents. This book is intended for undergraduate and graduate students, engineers, and researchers who are interested in control of network systems, multi-agent systems, social networks, and so on. 001451727 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed December 7, 2022). 001451727 650_0 $$aSystem analysis. 001451727 650_0 $$aComputer networks. 001451727 655_0 $$aElectronic books. 001451727 7001_ $$aDu, Mingjun,$$eauthor.$$0(orcid)0000-0003-1391-3936$$1https://orcid.org/0000-0003-1391-3936 001451727 7001_ $$aWu, Yuxin,$$eauthor.$$0(orcid)0000-0003-3681-1473$$1https://orcid.org/0000-0003-3681-1473 001451727 77608 $$iPrint version: $$z9811955298$$z9789811955297$$w(OCoLC)1334884225 001451727 830_0 $$aIntelligent control and learning systems,$$x2662-5466$$vv. 5. 001451727 852__ $$bebk 001451727 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-981-19-5530-3$$zOnline Access$$91397441.1 001451727 909CO $$ooai:library.usi.edu:1451727$$pGLOBAL_SET 001451727 980__ $$aBIB 001451727 980__ $$aEBOOK 001451727 982__ $$aEbook 001451727 983__ $$aOnline 001451727 994__ $$a92$$bISE