001452967 000__ 03798cam\a2200553\i\4500 001452967 001__ 1452967 001452967 003__ OCoLC 001452967 005__ 20230314003327.0 001452967 006__ m\\\\\o\\d\\\\\\\\ 001452967 007__ cr\cn\nnnunnun 001452967 008__ 220925s2023\\\\sz\a\\\\ob\\\\000\0\eng\d 001452967 020__ $$a9783031063404$$q(electronic bk.) 001452967 020__ $$a3031063406$$q(electronic bk.) 001452967 020__ $$z9783031063398 001452967 020__ $$z3031063392 001452967 0247_ $$a10.1007/978-3-031-06340-4$$2doi 001452967 035__ $$aSP(OCoLC)1345579630 001452967 040__ $$aYDX$$beng$$erda$$epn$$cYDX$$dGW5XE 001452967 0410_ $$aeng$$bger 001452967 049__ $$aISEA 001452967 050_4 $$aTA455.P58 001452967 08204 $$a620.1/92$$223/eng/20221006 001452967 1001_ $$aSchulz, Matthias C.,$$eauthor. 001452967 24512 $$aA new Kirchhoff-Love beam element and its application to polymer mechanics /$$cMatthias C. Schulz. 001452967 264_1 $$aCham :$$bSpringer,$$c[2023] 001452967 264_4 $$c©2023 001452967 300__ $$a1 online resource (xxi, 134 pages) :$$billustrations. 001452967 336__ $$atext$$btxt$$2rdacontent 001452967 337__ $$acomputer$$bc$$2rdamedia 001452967 338__ $$aonline resource$$bcr$$2rdacarrier 001452967 4901_ $$aMechanics and adaptronics,$$x2731-622X 001452967 504__ $$aIncludes bibliographical references. 001452967 5050_ $$aIntroduction -- Modeling of slender bodies -- Finite-element formulation of slender bodies modeled by geometrically exact beams -- Modeling the mechanics of single polymer chains in the fi nite-element framework -- Conclusion. 001452967 506__ $$aAccess limited to authorized users. 001452967 520__ $$aThe novel finite element formulations fall into the category of geometrically exact Kirchhoff-Love beams. A prominent characteristic of this category is that the absence of shear deformation is strongly enforced by removing two degrees of freedom. Further, the corresponding beam theories exhibit not only translational but also rotational degrees of freedom and their configurations thus form a non-additive and non-commutative space. Sophisticated interpolation schemes are required that need to be tested not only for locking, spatial convergence behavior, and energy conservation, but also for observer invariance and path-independence. For the three novel beam element formulations all these properties are analytically and numerically studied and confirmed, if applicable. Two different rotation parameterization strategies are employed based on the well-known geodesic interpolation used in many Simo-Reissner beams and the lesser known split into the so-called smallest rotation and a torsional part. Application of the former parameterization results in a mixed finite element formulation intrinsically free of locking phenomena. Additionally, the first geometrically exact Kirchhoff-Love beam element is presented, which strongly enforces inextensibility by removing another degree of freedom. Furthermore, the numerical efficiency of the new beam formulations is compared to other beam elements that allow for or suppress shear deformation. When modeling very slender beams, the new elements offer distinct numerical advantages. 001452967 546__ $$aEnglish, with abstract in German. 001452967 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed October 6, 2022). 001452967 650_0 $$aPolymers$$xMechanical properties. 001452967 650_0 $$aRotational motion (Rigid dynamics) 001452967 650_0 $$aFinite element method. 001452967 655_0 $$aElectronic books. 001452967 77608 $$iPrint version:$$aSchulz, Matthias C.$$tNew Kirchhoff-Love beam element and its application to polymer mechanics.$$dCham : Springer, 2022$$z9783031063398$$w(OCoLC)1338681830 001452967 830_0 $$aMechanics and adaptronics.$$x2731-622X 001452967 852__ $$bebk 001452967 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-031-06340-4$$zOnline Access$$91397441.1 001452967 909CO $$ooai:library.usi.edu:1452967$$pGLOBAL_SET 001452967 980__ $$aBIB 001452967 980__ $$aEBOOK 001452967 982__ $$aEbook 001452967 983__ $$aOnline 001452967 994__ $$a92$$bISE