001453306 000__ 05063cam\a22005297i\4500 001453306 001__ 1453306 001453306 003__ OCoLC 001453306 005__ 20230314003344.0 001453306 006__ m\\\\\o\\d\\\\\\\\ 001453306 007__ cr\cn\nnnunnun 001453306 008__ 221122s2023\\\\si\\\\\\o\\\\\0||\0\eng\d 001453306 019__ $$a1351748105$$a1351789338 001453306 020__ $$a9789811970870$$qelectronic book 001453306 020__ $$a9811970874$$qelectronic book 001453306 020__ $$z9811970866 001453306 020__ $$z9789811970863 001453306 0247_ $$a10.1007/978-981-19-7087-0$$2doi 001453306 035__ $$aSP(OCoLC)1351447523 001453306 040__ $$aYDX$$beng$$erda$$cYDX$$dEBLCP$$dGW5XE$$dOCLCF$$dOCLCQ$$dYDX 001453306 049__ $$aISEA 001453306 050_4 $$aTJ1185$$b.J59 2023 001453306 08204 $$a671.3/5$$223/eng/20221128 001453306 1001_ $$aJi, Xia. 001453306 24510 $$aMinimum Quantity Lubrication Machining :$$bProcess Analysis and Analytical Modeling /$$cby Xia Ji. 001453306 264_1 $$aSingapore$$bSpringer Nature Singapore$$c2023 001453306 300__ $$a1 online resource 001453306 336__ $$atext$$btxt$$2rdacontent 001453306 337__ $$acomputer$$bc$$2rdamedia 001453306 338__ $$aonline resource$$bcr$$2rdacarrier 001453306 504__ $$aIncludes bibliographical references. 001453306 5050_ $$aIntro -- Foreword -- Preface -- Contents -- About the Editor -- 1 Introduction -- 1.1 Background -- 1.2 Literature Review of Machining Induced Residual Stress -- 1.2.1 Experimental Efforts in Residual Stress -- 1.2.2 Finite Element Research of the Residual Stress -- 1.2.3 Analytical Modeling of Residual Stress -- 1.3 Literature Review of Minimum Quantity Lubrication Machining -- 1.3.1 Literature Review of MQL Experimental Investigation -- 1.3.2 Literature Review of MQL Analytical Modeling -- 1.4 Motivation of the Research -- 1.5 Arrangement of Chapter -- References 001453306 5058_ $$a2 The Effects of MQL on Tribological Attributes in Machining -- 2.1 Penetration Mechanism of Cutting Medium -- 2.1.1 Penetration Mechanism of Convectional Flood Cooling Machining -- 2.1.2 Penetration Mechanism of MQL Machining -- 2.2 Lubrication Effect of MQL -- 2.2.1 Lubrication Mechanism of MQL -- 2.2.2 Friction Coefficient in MQL -- 2.3 Cooling Effect of MQL -- 2.3.1 Cooling Mechanism of MQL -- 2.3.2 Heat Transfer Coefficient in MQL -- 2.4 Summary -- References -- 3 Force-Temperature Coupled Prediction Model -- 3.1 Predictive Modeling of Cutting Force Based on Orthogonal Cutting 001453306 5058_ $$a3.1.1 Chip Formation Force Model -- 3.1.2 Plowing Force Model -- 3.2 Predictive Modeling of Cutting Temperature -- 3.2.1 Temperature Model in Workpiece -- 3.2.2 Temperature Model in Chip -- 3.2.3 Temperature Model in Tool -- 3.3 Force-Temperature Coupled Model -- 3.3.1 Modified Oxley's Predictive Model -- 3.3.2 Iterative Coupling Model of Cutting Force and Cutting Temperature -- 3.4 Comparison of Cutting Force Prediction Models -- 3.4.1 Comparison of Model Inputs and Application Scope -- 3.4.2 Comparison of Predicted Cutting Force -- 3.5 Summary -- References 001453306 5058_ $$a4 Residual Stress Model in MQL Machining -- 4.1 Prediction of Stress Distribution -- 4.1.1 Stress Due to Mechanical Load -- 4.1.2 Stress Due to Thermal Load -- 4.1.3 Stress Analysis -- 4.2 Residual Stress Prediction Model -- 4.2.1 Model Criteria -- 4.2.2 Load History -- 4.2.3 Relax Process -- 4.3 Comparison of Residual Stress Prediction Models -- 4.3.1 Comparison of Assumption of Two Prediction Models -- 4.3.2 Comparison of Results of the Prediction Models -- 4.4 Summary -- References -- 5 Experimental Validation by Orthogonal Cutting of AISI 4130 Alloy -- 5.1 Experimental Method 001453306 5058_ $$a5.1.1 Design of the Workpiece -- 5.1.2 Design of the Setup -- 5.1.3 Design of the Measurement -- 5.2 Analysis of Experimental Results and Model Verification -- 5.2.1 Determination of the Parameter in the Prediction Model -- 5.2.2 Validation of Cutting Force -- 5.2.3 Validation of Cutting Temperature -- 5.2.4 Validation of Residual Stress Prediction Model -- 5.3 Summary -- References -- 6 Sensitivity Analysis of Machined Residual Stress in MQL Machining -- 6.1 Selection of the Parameters -- 6.2 Influence of MQL Parameters -- 6.2.1 Influence of Boundary Lubrication Film Thickness 001453306 506__ $$aAccess limited to authorized users. 001453306 520__ $$aThis book focuses on the effect of minimum quantity lubrication (MQL) on the mechanical and thermal history, which will mainly determine the quality of the machined components. By analyzing the details of the lubrication and cooling effects in MQL machining, the book provides readers with an accurate and fast way to predict the residual stress of machined components. These process analyses and quality prediction will be beneficial for understanding the MQL machining theory and its widespread application in industry. 001453306 650_0 $$aMachining. 001453306 650_0 $$aLubrication and lubricants. 001453306 655_0 $$aElectronic books. 001453306 77608 $$iPrint version: $$z9811970866$$z9789811970863$$w(OCoLC)1342985865 001453306 852__ $$bebk 001453306 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-981-19-7087-0$$zOnline Access$$91397441.1 001453306 909CO $$ooai:library.usi.edu:1453306$$pGLOBAL_SET 001453306 980__ $$aBIB 001453306 980__ $$aEBOOK 001453306 982__ $$aEbook 001453306 983__ $$aOnline 001453306 994__ $$a92$$bISE