001453388 000__ 05359cam\a2200541\a\4500 001453388 001__ 1453388 001453388 003__ OCoLC 001453388 005__ 20230314003348.0 001453388 006__ m\\\\\o\\d\\\\\\\\ 001453388 007__ cr\un\nnnunnun 001453388 008__ 221201s2023\\\\si\\\\\\ob\\\\000\0\eng\d 001453388 019__ $$a1352975477 001453388 020__ $$a9789811961687$$q(electronic bk.) 001453388 020__ $$a9811961689$$q(electronic bk.) 001453388 020__ $$z9811961670 001453388 020__ $$z9789811961670 001453388 0247_ $$a10.1007/978-981-19-6168-7$$2doi 001453388 035__ $$aSP(OCoLC)1352414732 001453388 040__ $$aYDX$$beng$$cYDX$$dEBLCP$$dGW5XE$$dOCLCQ$$dOCLCF 001453388 049__ $$aISEA 001453388 050_4 $$aTS191.8 001453388 08204 $$a670.4272$$223/eng/20221219 001453388 1001_ $$aLiao, Wenhe. 001453388 24510 $$aError compensation for industrial robots /$$cWenhe Liao, Bo Li, Wei Tian, Pengcheng Li. 001453388 260__ $$aSingapore :$$bSpringer,$$c2023. 001453388 300__ $$a1 online resource 001453388 504__ $$aIncludes bibliographical references. 001453388 5050_ $$aIntro -- Preface -- Acknowledgements -- Contents -- Part I Theories -- 1 Introduction -- 1.1 Background -- 1.2 What is Robot Accuracy -- 1.3 Why Error Compensation -- 1.4 Early Investigations and Insights -- 1.4.1 Offline Calibration -- 1.4.2 Online Feedback -- 1.5 Summary -- References -- 2 Kinematic Modeling -- 2.1 Introduction -- 2.2 Pose Description and Transformation -- 2.2.1 Descriptions of Position and Posture -- 2.2.2 Translation and Rotation -- 2.3 RPY Angle and Euler Angle -- 2.4 Forward Kinematics -- 2.4.1 Link Description and Link Frame 001453388 5058_ $$a2.4.2 Link Transformation and Forward Kinematic Model -- 2.4.3 Forward Kinematic Model of a Typical KUKA Industrial Robot -- 2.5 Inverse Kinematics -- 2.5.1 Uniquely Closed Solution with Joint Constraints -- 2.5.2 Inverse Kinematic Model of a Typical KUKA Industrial Robot -- 2.6 Error Modeling -- 2.6.1 Differential Transformation -- 2.6.2 Differential Transformation of Consecutive Links -- 2.6.3 Kinematics Error Model -- 2.7 Summary -- References -- 3 Positioning Error Compensation Using Kinematic Calibration -- 3.1 Introduction -- 3.2 Observability-Index-Based Random Sampling Method 001453388 5058_ $$a3.2.1 Observability Index of Robot Kinematic Parameters -- 3.2.2 Selection Method of the Sample Points -- 3.3 Uniform-Grid-Based Sampling Method -- 3.3.1 Optimal Grid Size -- 3.3.2 Sampling Point Planning Method -- 3.4 Kinematic Calibration Considering Robot Flexibility Error -- 3.4.1 Robot Flexibility Analysis -- 3.4.2 Establishment of Robot Flexibility Error Model -- 3.4.3 Robot Kinematic Error Model with Flexibility Error -- 3.5 Kinematic Calibration Using Variable Parametric Error -- 3.6 Parameter Identification Using L-M Algorithm -- 3.7 Verification of Error Compensation Performance 001453388 5058_ $$a3.7.1 Kinematic Calibration with Robot Flexibility Error -- 3.7.2 Error Compensation Using Variable Parametric Error -- 3.8 Summary -- References -- 4 Error-Similarity-Based Positioning Error Compensation -- 4.1 Introduction -- 4.2 Similarity of Robot Positioning Error -- 4.2.1 Qualitative Analysis of Error Similarity -- 4.2.2 Quantitative Analysis of Error Similarity -- 4.2.3 Numerical Simulation and Discussion -- 4.3 Error Compensation Based on Inverse Distance Weighting and Error Similarity -- 4.3.1 Inverse Distance Weighting Interpolation Method 001453388 5058_ $$a4.3.2 Error Compensation Method Combined IDW with Error Similarity -- 4.3.3 Numerical Simulation and Discussion -- 4.4 Error Compensation Based on Linear Unbiased Optimal Estimation and Error Similarity -- 4.4.1 Robot Positioning Error Mapping Based on Error Similarity -- 4.4.2 Linear Unbiased Optimal Estimation of Robot Positioning Error -- 4.4.3 Numerical Simulation and Discussion -- 4.4.4 Error Compensation -- 4.5 Optimal Sampling Based on Error Similarity -- 4.5.1 Mathematical Model of Optimal Sampling Points -- 4.5.2 Multi-Objective Optimization and Non-Inferior Solution 001453388 506__ $$aAccess limited to authorized users. 001453388 520__ $$aThis book highlights the basic theories and key technologies of error compensation for industrial robots. The chapters are arranged in the order of actual applications: establishing the robot kinematic models, conducting error analysis, conducting kinematic and non-kinematic calibrations, and planning optimal sampling points. To help readers effectively apply the technologies, the book elaborates the experiments and applications in robotic drilling and milling, which further verifies the effectiveness of the technologies. This book presents the authors research achievements in the past decade in improving robot accuracy. It is straightforwardly applicable for technical personnel in the aviation field, and provides valuable reference for researchers and engineers in various robotic applications. 001453388 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed December 19, 2022). 001453388 650_0 $$aRobots, Industrial. 001453388 650_0 $$aRobots$$xError detection and recovery. 001453388 655_0 $$aElectronic books. 001453388 7001_ $$aLi, Bo. 001453388 7001_ $$aTian, Wei. 001453388 7001_ $$aLi, Pengcheng. 001453388 77608 $$iPrint version: $$z9811961670$$z9789811961670$$w(OCoLC)1337404048 001453388 852__ $$bebk 001453388 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-981-19-6168-7$$zOnline Access$$91397441.1 001453388 909CO $$ooai:library.usi.edu:1453388$$pGLOBAL_SET 001453388 980__ $$aBIB 001453388 980__ $$aEBOOK 001453388 982__ $$aEbook 001453388 983__ $$aOnline 001453388 994__ $$a92$$bISE