001453724 000__ 05449cam\a2200589\i\4500 001453724 001__ 1453724 001453724 003__ OCoLC 001453724 005__ 20230314003441.0 001453724 006__ m\\\\\o\\d\\\\\\\\ 001453724 007__ cr\cn\nnnunnun 001453724 008__ 230113s2023\\\\si\a\\\\ob\\\\000\0\eng\d 001453724 019__ $$a1357018054 001453724 020__ $$a9789811967986$$q(electronic bk.) 001453724 020__ $$a9811967989$$q(electronic bk.) 001453724 020__ $$z9789811967979 001453724 020__ $$z9811967970 001453724 0247_ $$a10.1007/978-981-19-6798-6$$2doi 001453724 035__ $$aSP(OCoLC)1356890607 001453724 040__ $$aYDX$$beng$$erda$$epn$$cYDX$$dGW5XE$$dEBLCP$$dOCLCQ 001453724 049__ $$aISEA 001453724 050_4 $$aTA660.P55 001453724 08204 $$a621.8/672$$223/eng/20230119 001453724 1001_ $$aLu, Hongfang,$$eauthor. 001453724 24510 $$aPipeline inspection and health monitoring technology :$$bthe key to integrity management /$$cHongfang Lu, Zhao-Dong Xu, Tom Iseley, Haoyan Peng, Lingdi Fu. 001453724 264_1 $$aSingapore :$$bSpringer,$$c[2023] 001453724 264_4 $$c©2023 001453724 300__ $$a1 online resource (xii, 285 pages) :$$billustrations (some color) 001453724 336__ $$atext$$btxt$$2rdacontent 001453724 337__ $$acomputer$$bc$$2rdamedia 001453724 338__ $$aonline resource$$bcr$$2rdacarrier 001453724 504__ $$aIncludes bibliographical references. 001453724 5050_ $$aIntro -- Preface -- Acknowledgements -- Contents -- 1 Background and Health Problems of Pipelines -- 1.1 Introduction -- 1.2 Pipeline Classification and Construction Status -- 1.3 Pipeline Health Status Globally -- 1.4 Pipeline Inspection Technology System -- 1.5 Technical System of Pipeline Health Monitoring -- 1.6 Global Pipeline Inspection and Monitoring Standards and Specifications -- References -- 2 Pipeline Inspection Technology -- 2.1 Introduction -- 2.2 Visual Inspection Technology -- 2.3 Electromagnetic Inspection Technology -- 2.3.1 Magnetic Flux Leakage 001453724 5058_ $$a2.3.2 Remote Field Eddy Current -- 2.3.3 Broadband Electromagnetic -- 2.3.4 Pulsed Eddy Current System -- 2.3.5 Ground Penetrating Radar -- 2.4 Acoustic Inspection Technology -- 2.4.1 Acoustic Emission Method -- 2.4.2 Ultrasonic Method -- 2.4.3 Ultrasonic Guided Wave Method -- 2.4.4 Echo Impact -- 2.4.5 SmartBall -- 2.4.6 Sonar System Method -- 2.4.7 Leakfinder -- 2.4.8 Sahara -- 2.5 Optical Inspection Technology -- 2.5.1 Lidar System -- 2.5.2 Diode Laser Absorption Method -- 2.5.3 Thermal Imaging -- 2.5.4 Spectral Imaging Method -- 2.6 Chemical Composition Analysis-Based Method 001453724 5058_ $$a2.6.1 Sniffer Method -- 2.6.2 Vapor Sampling Method -- 2.7 Technology Selection Considerations -- References -- 3 Pipeline Health Monitoring Technology -- 3.1 Introduction -- 3.2 Optical Fiber Sensing -- 3.2.1 Optical Time Domain Reflection (OTDR) -- 3.2.2 Fiber Bragg Grating (FBG) -- 3.2.3 Interferometric Optical Fiber Sensor -- 3.3 Signal-Based Method -- 3.3.1 Volume/Mass Balance Method -- 3.3.2 Negative Pressure Wave Method -- 3.3.3 GPS Time Label Method -- 3.3.4 Pressure Point Analysis Method -- 3.3.5 Cross Correlation Analysis -- 3.3.6 Transient Test-Based Technique 001453724 5058_ $$a3.3.7 State Estimation Method -- 3.4 Technology Selection Considerations -- References -- 4 Health Monitoring Technology Based on Artificial Intelligence -- 4.1 Introduction -- 4.2 Classic Models -- 4.2.1 Linear Regression -- 4.2.2 Naive Bayes -- 4.2.3 Artificial Neural Network -- 4.2.4 Kernel-Based Model -- 4.2.5 Decision Tree Method -- 4.2.6 Deep Learning -- 4.3 Optimizers -- 4.3.1 Fruit Fly Optimizer -- 4.3.2 Grey Wolf Optimizer -- 4.3.3 Whale Optimization Algorithm -- 4.3.4 Nondominated Sorting Genetic Algorithm II -- 4.3.5 Multi-objective Grey Wolf Optimizer 001453724 5058_ $$a4.3.6 Multi-objective Salp Swarm Algorithm -- 4.4 Application Scenarios -- 4.4.1 Fault Diagnosis -- 4.4.2 Risk Prediction -- 4.4.3 Condition-Related Parameter Prediction -- 4.4.4 Visual Defect Recognition -- 4.5 Application Summary -- 4.5.1 Model Category -- 4.5.2 Model Framework -- 4.5.3 Data Size and Data Division -- 4.5.4 Input Variable -- 4.5.5 Error (Accuracy) Indicator -- 4.5.6 Real-World Applications -- 4.6 Specific Applications -- 4.6.1 Burst Pressure Prediction [236] -- 4.6.2 Pullback Force Prediction [229] -- References -- 5 Data Preprocessing Technology in Pipeline Health Monitoring 001453724 506__ $$aAccess limited to authorized users. 001453724 520__ $$aThis book includes six chapters aiming to introduce global pipeline inspection and health monitoring technologies comprehensively. The pipeline is the blood vessel of the energy system and a vital lifeline project. After many years of service, the pipeline gradually enters the aging stage. Pipeline inspection and health monitoring can effectively reduce the failure and accident risks of the pipeline, and it is conducive to integrity management. Through case analysis, practitioners can have a deeper understanding of the application of related technologies. 001453724 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed January 19, 2023). 001453724 650_0 $$aPipelines$$xMaintenance and repair. 001453724 655_0 $$aElectronic books. 001453724 7001_ $$aXu, Zhao-Dong,$$eauthor. 001453724 7001_ $$aIseley, Tom,$$eauthor. 001453724 7001_ $$aPeng, Haoyan,$$eauthor. 001453724 7001_ $$aFu, Lingdi,$$eauthor. 001453724 77608 $$iPrint version: $$z9811967970$$z9789811967979$$w(OCoLC)1342623536 001453724 852__ $$bebk 001453724 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-981-19-6798-6$$zOnline Access$$91397441.1 001453724 909CO $$ooai:library.usi.edu:1453724$$pGLOBAL_SET 001453724 980__ $$aBIB 001453724 980__ $$aEBOOK 001453724 982__ $$aEbook 001453724 983__ $$aOnline 001453724 994__ $$a92$$bISE