001454455 000__ 05531cam\a2200613\i\4500 001454455 001__ 1454455 001454455 003__ OCoLC 001454455 005__ 20230314003520.0 001454455 006__ m\\\\\o\\d\\\\\\\\ 001454455 007__ cr\cn\nnnunnun 001454455 008__ 230208s2023\\\\sz\a\\\\o\\\\\101\0\eng\d 001454455 020__ $$a9783031247552$$q(electronic bk.) 001454455 020__ $$a3031247558$$q(electronic bk.) 001454455 020__ $$z9783031247545 001454455 020__ $$z303124754X 001454455 0247_ $$a10.1007/978-3-031-24755-2$$2doi 001454455 035__ $$aSP(OCoLC)1369157835 001454455 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dEBLCP 001454455 049__ $$aISEA 001454455 050_4 $$aZA3075 001454455 08204 $$a025.04$$223/eng/20230208 001454455 1112_ $$aCCIR (Conference)$$n(28th :$$d2022 :$$cChongqing, China). 001454455 24510 $$aInformation retrieval :$$b28th China Conference, CCIR 2022, Chongqing, China, September 16-18, 2022, revised selected papers /$$cYi Chang, Xiaofei Zhu (eds.). 001454455 24630 $$aCCIR 2022 001454455 264_1 $$aCham :$$bSpringer,$$c[2023] 001454455 264_4 $$c©2023 001454455 300__ $$a1 online resource (xi, 105 pages) :$$billustrations (chiefly color). 001454455 336__ $$atext$$btxt$$2rdacontent 001454455 337__ $$acomputer$$bc$$2rdamedia 001454455 338__ $$aonline resource$$bcr$$2rdacarrier 001454455 4901_ $$aLecture notes in computer science ;$$v13819 001454455 500__ $$aSelected conference proceedings. 001454455 500__ $$aIncludes author index. 001454455 5050_ $$aIntro -- Preface -- Organization -- Contents -- A Position-Aware Word-Level and Clause-Level Attention Network for Emotion Cause Recognition -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 The Definition of Emotion Cause Recognition -- 3.2 Position-Aware Word-Level and Clause-Level Attention Network for Emotion Cause Recognition -- 3.3 Model Training -- 4 Experiment -- 4.1 Experimental Settings -- 4.2 Experimental Results -- 4.3 Qualitative Analysis -- 5 Conclusion and Future Work -- References -- ID-Agnostic User Behavior Pre-training for Sequential Recommendation 001454455 5058_ $$a1 Introduction -- 2 Preliminaries -- 3 Methodology -- 3.1 ID-Agnostic User Behavior Pre-training -- 3.2 Fine-Tuning for Recommendation -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Experimental Results -- 5 Related Work -- 6 Conclusion -- References -- Enhance Performance of Ad-hoc Search via Prompt Learning -- 1 Introduction -- 2 Related Work -- 2.1 Ad Hoc Search with PTM -- 2.2 Prompt Learning -- 3 Preliminary -- 3.1 Ad hoc Search -- 3.2 Prompt Learning -- 4 Methodology -- 5 Experiments -- 5.1 Dataset and Metric -- 5.2 Experimental Setup -- 5.3 Result and Analysis -- 5.4 Case Study 001454455 5058_ $$a6 Conclusion -- References -- Syntax-Aware Transformer for Sentence Classification -- 1 Introduction -- 2 Syntax-Aware Transformer -- 2.1 Syntactic Subnetwork -- 2.2 Semantic Subnetwork -- 2.3 Merging Layer -- 3 Experiments -- 3.1 Datasets -- 3.2 Experimental Settings -- 3.3 Baseline Models -- 3.4 Results and Discussion -- 3.5 Case Study -- 4 Conclusions -- References -- Evaluation of Deep Reinforcement Learning Based Stock Trading -- 1 Introduction -- 2 Related Works -- 3 RL Modeling of Stock Trading -- 3.1 Problem Description -- 3.2 Mathematical Presentation -- 3.3 Trading Details 001454455 5058_ $$a3.4 Feasibility Analysis of RL-Based Stock Trading -- 4 Experiments -- 4.1 Stock Dataset -- 4.2 Methodology -- 4.3 Results -- 5 Conclusion and Future Works -- References -- InDNI: An Infection Time Independent Method for Diffusion Network Inference -- 1 Introduction -- 2 Related Work -- 3 Problem Statement -- 4 InDNI Algorithm -- 4.1 Node Representation Learning -- 4.2 Similarity Measure -- 4.3 Filtering Candidate Node Pairs -- 4.4 Network Inference -- 5 Experiments -- 5.1 Experimental Setup -- 5.2 Results and Discussion -- 6 Conclusion and Future Work -- References 001454455 5058_ $$aBeyond Precision: A Study on Recall of Initial Retrieval with Neural Representations -- 1 Introduction -- 2 Related Work -- 2.1 Initial Retrieval -- 2.2 Neural Representations for IR -- 3 Our Approach -- 3.1 Symbolic Index -- 3.2 Neural Index -- 3.3 Parallel Search Scheme -- 3.4 Sequential Search Scheme -- 3.5 Discussions -- 4 Experiments -- 4.1 Baselines and Experimental Settings -- 4.2 Evaluation Methodology -- 4.3 Retrieval Performance and Analysis -- 4.4 Analysis on Retrieved Relevant Documents -- 5 Conclusions -- References 001454455 506__ $$aAccess limited to authorized users. 001454455 520__ $$aThis book constitutes the refereed proceedings of the 28th China Conference on Information Retrieval, CCIR 2022, held in Chongqing, China, in September 2022. Information retrieval aims to meet the demand of human on the Internet to obtain information quickly and accurately. The 8 full papers presented were carefully reviewed and selected from numerous submissions. The papers provide a wide range of research results in information retrieval area. 001454455 588__ $$aDescription based on print version record. 001454455 650_0 $$aInformation retrieval$$vCongresses. 001454455 655_0 $$aElectronic books. 001454455 655_7 $$aConference papers and proceedings.$$2lcgft 001454455 7001_ $$aChang, Yi,$$eeditor. 001454455 7001_ $$aZhu, Xiaofei,$$eeditor. 001454455 77608 $$iPrint version:$$aCCIR (Conference) (28th : 2022 : Chongqing, China), creator.$$tInformation retrieval.$$dCham : Springer Nature Switzerland, 2023$$z9783031247545$$w(OCoLC)1359608339 001454455 830_0 $$aLecture notes in computer science ;$$v13819. 001454455 852__ $$bebk 001454455 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-031-24755-2$$zOnline Access$$91397441.1 001454455 909CO $$ooai:library.usi.edu:1454455$$pGLOBAL_SET 001454455 980__ $$aBIB 001454455 980__ $$aEBOOK 001454455 982__ $$aEbook 001454455 983__ $$aOnline 001454455 994__ $$a92$$bISE