001454599 000__ 04762cam\a2200493\i\4500 001454599 001__ 1454599 001454599 003__ OCoLC 001454599 005__ 20230314003220.0 001454599 006__ m\\\\\o\\d\\\\\\\\ 001454599 007__ cr\cn\nnnunnun 001454599 008__ 230213s2023\\\\sz\\\\\\o\\\\\000\0\eng\d 001454599 019__ $$a1369398371$$a1369667700$$a1369669025 001454599 020__ $$a9783031237621$$q(electronic bk.) 001454599 020__ $$a3031237625$$q(electronic bk.) 001454599 020__ $$z9783031237614 001454599 020__ $$z3031237617 001454599 0247_ $$a10.1007/978-3-031-23762-1$$2doi 001454599 035__ $$aSP(OCoLC)1369803476 001454599 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dEBLCP$$dYDX 001454599 049__ $$aISEA 001454599 050_4 $$aQC173.6 001454599 08204 $$a530.11$$223/eng/20230213 001454599 1001_ $$aPoliakovsky, Arkady,$$eauthor. 001454599 24510 $$aLorentzian geometrical structures with global time, gravity and electrodynamics /$$cArkady Poliakovsky. 001454599 264_1 $$aCham :$$bSpringer,$$c[2023] 001454599 264_4 $$c©2023 001454599 300__ $$a1 online resource (x, 189 pages) 001454599 336__ $$atext$$btxt$$2rdacontent 001454599 337__ $$acomputer$$bc$$2rdamedia 001454599 338__ $$aonline resource$$bcr$$2rdacarrier 001454599 5050_ $$a1. Preliminary introduction -- 2. Basic definitions and statements of the main results -- 2.1. Generalized-Lorentzs structures with time-direction and global time -- 2.1.1. Pseudo-Lorentzian coordinate systems -- 2.2. Kinematical Lorentzs structure with global time -- 2.3. Kinematical and Dynamical generalized-Lorentz structures with time direction -- 2.4. Lagrangian of the motion of a classical point particle in a given pseudo-metric with time direction -- 2.5. Lagrangian of the electromagnetic field in a given pseudo-metric -- 2.6. Correlated pseudo-metrics -- 2.7. Kinematically correlated models of the genuine gravity -- 2.8. Lagrangian for dynamical time-direction and its limiting case -- 2.9 Lagrangian of the genuine gravity -- 3. Mass, charge and Lagrangian densities and currents of the system of classical point particles -- 4. The total simplified Lagrangian in (2.9.23), (2.9.24), for the limiting case of (2.9.20) in a cartesian coordinate system -- 5. The Euler-Lagrange for the Lagrangian of the motion of a classical point particle in a cartesian coordinate system -- 6. The Euler-Lagrange for the Lagrangian of the gravitational and Electromagnetic fields in (4.0.71) in a cartesian coordinate system -- 6.1. The Euler-Lagrange for the Lagrangian in (4.1.71) in a cartesian coordinate system -- 7. Gravity field of spherically symmetric massive resting body in a coordinate system which is cartesian and inertial simultaneously -- 7.1. Certain curvilinear coordinate system in the case of stationary radially symmetric gravitational field and relation to the Schwarzschild metric -- 8. Newtonian gravity as an approximation of (6.0.52) -- 8.1. Newtonian gravity as an approximation of (6.1.52) -- 9. Polarization and magnetization -- 9.1 Polarization and magnetization in a cartesian coordinate system -- 10. Detailed proves of the stated Theorems, Propositions and Lemmas -- 11. Appendix: some technical statements. 001454599 506__ $$aAccess limited to authorized users. 001454599 520__ $$aThis book investigates Lorentzian structures in the four-dimensional space-time, supplemented either by a covector field of the time-direction or by a scalar field of the global time. Furthermore, it proposes a new metrizable model of gravity. In contrast to the usual General Relativity theory, where all ten components of the symmetric pseudo-metric are independent variables, the gravity model presented here essentially depends only on a single four-covector field, and is restricted to have only three-independent components. However, the author proves that the gravitational field, governed by the proposed model and generated by some massive body, resting and spherically symmetric in some coordinate system, is given by a pseudo-metric that coincides with the well known Schwarzschild metric from General Relativity. The Maxwell equations and electrodynamics are also investigated in the framework of the proposed model. In particular, the covariant formulation of electrodynamics of moving dielectrics and para/diamagnetic media is derived. 001454599 588__ $$aDescription based on print version record. 001454599 650_0 $$aGeneral relativity (Physics) 001454599 650_0 $$aQuantum electrodynamics. 001454599 655_0 $$aElectronic books. 001454599 77608 $$iPrint version:$$aPoliakovsky, Arkady.$$tLorentzian geometrical structures with global time, gravity and electrodynamics.$$dCham : Springer Nature Switzerland, 2023$$z9783031237614$$w(OCoLC)1363814913 001454599 852__ $$bebk 001454599 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-031-23762-1$$zOnline Access$$91397441.1 001454599 909CO $$ooai:library.usi.edu:1454599$$pGLOBAL_SET 001454599 980__ $$aBIB 001454599 980__ $$aEBOOK 001454599 982__ $$aEbook 001454599 983__ $$aOnline 001454599 994__ $$a92$$bISE