001454886 000__ 03514cam\a22005417i\4500 001454886 001__ 1454886 001454886 003__ OCoLC 001454886 005__ 20230314003233.0 001454886 006__ m\\\\\o\\d\\\\\\\\ 001454886 007__ cr\cn\nnnunnun 001454886 008__ 230227s2023\\\\sz\a\\\\ob\\\\001\0\eng\d 001454886 019__ $$a1371215244 001454886 020__ $$a9783031245718$$q(electronic bk.) 001454886 020__ $$a3031245717$$q(electronic bk.) 001454886 020__ $$z3031245709 001454886 020__ $$z9783031245701 001454886 0247_ $$a10.1007/978-3-031-24571-8$$2doi 001454886 035__ $$aSP(OCoLC)1371240379 001454886 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dAU@$$dEBLCP 001454886 049__ $$aISEA 001454886 050_4 $$aQA299 001454886 08204 $$a515.24330285$$223/eng/20230227 001454886 1001_ $$aMahzoon, Alireza,$$eauthor. 001454886 24510 $$aFormal verification of structurally complex multipliers /$$cAlireza Mahzoon, Daniel Große, Rolf Drechsler. 001454886 264_1 $$aCham, Switzerland :$$bSpringer,$$c2023. 001454886 300__ $$a1 online resource (130 pages) :$$billustrations (black and white, and colour). 001454886 336__ $$atext$$btxt$$2rdacontent 001454886 337__ $$acomputer$$bc$$2rdamedia 001454886 338__ $$aonline resource$$bcr$$2rdacarrier 001454886 347__ $$atext file$$bPDF$$2rda 001454886 504__ $$aIncludes bibliographical references and index. 001454886 5050_ $$aIntroduction -- Background -- Challenges of SCA-based Verification -- Local Vanishing Monomials Removal -- Reverse Engineering -- Dynamic Backward Rewriting -- SCA-based Verifier RevSCA-2.0 -- Debugging -- Conclusion and Outlook. 001454886 506__ $$aAccess limited to authorized users. 001454886 520__ $$aThis book addresses the challenging tasks of verifying and debugging structurally complex multipliers. In the area of verification, the authors first investigate the challenges of Symbolic Computer Algebra (SCA)-based verification, when it comes to proving the correctness of multipliers. They then describe three techniques to improve and extend SCA: vanishing monomials removal, reverse engineering, and dynamic backward rewriting. This enables readers to verify a wide variety of multipliers, including highly complex and optimized industrial benchmarks. The authors also describe a complete debugging flow, including bug localization and fixing, to find the location of bugs in structurally complex multipliers and make corrections. Provides extensive introduction to the field of Symbolic Computer Algebra (SCA) and its application to multiplier verification; Discusses the challenges of SCA-based verification when it comes to proving the correctness of structurally complex multipliers; Describes three techniques to improve and extend SCA for the verification of structurally complex multipliers; Introduces a complete debugging flow to localize and fix bugs in structurally complex multipliers. 001454886 588__ $$aDescription based on print version record. 001454886 650_0 $$aNumerical calculations$$xVerification$$xData processing. 001454886 650_0 $$aAlgebra$$xData processing. 001454886 650_0 $$aMultipliers (Mathematical analysis) 001454886 655_0 $$aElectronic books. 001454886 7001_ $$aGrosse, Daniel,$$eauthor. 001454886 7001_ $$aDrechsler, Rolf,$$eauthor. 001454886 77608 $$iPrint version:$$aMAHZOON, ALIREZA. GROSSE, DANIEL. DRECHSLER, ROLF.$$tFORMAL VERIFICATION OF STRUCTURALLY COMPLEX MULTIPLIERS.$$d[Place of publication not identified] : SPRINGER INTERNATIONAL PU, 2023$$z3031245709$$w(OCoLC)1356020652 001454886 852__ $$bebk 001454886 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-031-24571-8$$zOnline Access$$91397441.1 001454886 909CO $$ooai:library.usi.edu:1454886$$pGLOBAL_SET 001454886 980__ $$aBIB 001454886 980__ $$aEBOOK 001454886 982__ $$aEbook 001454886 983__ $$aOnline 001454886 994__ $$a92$$bISE