001461545 000__ 06236cam\a22006377a\4500 001461545 001__ 1461545 001461545 003__ OCoLC 001461545 005__ 20230503003358.0 001461545 006__ m\\\\\o\\d\\\\\\\\ 001461545 007__ cr\un\nnnunnun 001461545 008__ 230318s2023\\\\sz\\\\\\o\\\\\001\0\eng\d 001461545 019__ $$a1373233325 001461545 020__ $$a9783031176074$$q(electronic bk.) 001461545 020__ $$a3031176073$$q(electronic bk.) 001461545 020__ $$z3031176065 001461545 020__ $$z9783031176067 001461545 0247_ $$a10.1007/978-3-031-17607-4$$2doi 001461545 035__ $$aSP(OCoLC)1373345103 001461545 040__ $$aEBLCP$$beng$$cEBLCP$$dGW5XE$$dYDX$$dEBLCP$$dOCLCF 001461545 049__ $$aISEA 001461545 050_4 $$aTK2901 001461545 08204 $$a621.31/242$$223/eng/20230322 001461545 24500 $$aComputer aided engineering of batteries /$$cShriram Santhanagopalan, editor. 001461545 260__ $$aCham :$$bSpringer,$$c2023. 001461545 300__ $$a1 online resource (289 p.). 001461545 4901_ $$aModern Aspects of Electrochemistry ;$$vv.62 001461545 500__ $$a3.3.1.1 Porous Microstructure Characterization: Effective Property Calculations 001461545 500__ $$aIncludes index. 001461545 5050_ $$aIntro -- Foreword -- Preface -- Acknowledgments -- Contents -- 1 Applications of Commercial Software for Lithium-Ion Battery Modeling and Simulation -- 1.1 Introduction -- 1.2 Overview of Commercial Computer Aided Engineering Software -- 1.3 Commercial Products for Li-Ion Battery Design and Simulation -- 1.4 Specific Applications -- 1.4.1 Materials Design -- 1.4.2 Electrode Simulation -- 1.4.3 Cell Design and Simulation -- 1.4.4 Module and Pack Design -- 1.4.5 Battery Management Systems -- 1.4.6 System Design -- 1.4.6.1 MATLAB/Simulink -- 1.4.6.2 Siemens -- 1.5 Conclusions 001461545 5058_ $$a1.5.1 Materials Design -- 1.5.2 Electrode Design -- 1.5.3 Cell Design -- 1.5.4 Module/Pack Design -- 1.5.5 Battery Management and System Design -- References -- 2 In Situ Measurement of Current Distribution in Large-Format Li-Ion Cells -- 2.1 Introduction -- 2.2 Direct Measurement of Current Distribution Using Segmented Li-Ion Cells -- 2.2.1 Experimental Method Using Segmented Li-Ion Cells -- 2.2.1.1 Experimental Cell with Segmented Positive Electrode -- 2.2.1.2 Experimental System -- 2.2.2 Results from Segmented Li-Ion Cell -- 2.2.2.1 Overall Cell Performance 001461545 5058_ $$a2.2.2.2 Current Distribution During 1 C Discharge at Room Temperature -- 2.2.2.3 Effects of Discharging C Rate on Current Distribution -- 2.2.2.4 Effects of Ambient Temperature -- 2.2.2.5 Local SOC Distribution Calculated from Current Distribution Data -- 2.2.2.6 Internal Balancing Current After Discharge and Its Effects on Local SOC Distribution -- 2.2.2.7 Current Distribution During Charging -- 2.2.2.8 Current Distribution During Partial Charging and Discharging -- 2.2.2.9 Effects of Tab Configuration on Current Distribution and Usable Energy Density 001461545 5058_ $$a2.2.2.10 Correlation Between Energy Density and Current Distribution Non-uniformity -- 2.3 Indirect Diagnosis of Current Distribution Through Local Potential Measurement -- 2.3.1 Experimental Method Using Modified Commercial Cylindrical Cells -- 2.3.2 Results from Modified Commercial Cylindrical Cell -- 2.3.3 Experimental Method Using Single-Layered Pouch Li-Ion Cell -- 2.3.4 Results from Single-Layered Pouch Li-Ion Cell -- 2.4 Noninvasive Diagnosis of Current Distribution Using Magnetic Resonance Imaging -- 2.4.1 Measurement Method Using Magnetic Resonance Imaging 001461545 5058_ $$a2.4.2 Results from Magnetic Resonance Imaging -- 2.5 Summary and Future Work -- References -- 3 Mesoscale Modeling and Analysis in Electrochemical EnergySystems -- 3.1 Introduction -- 3.2 Electrochemical Physics -- 3.2.1 Thermo-electrochemical Coupling in Lithium-Ion Batteries -- 3.2.2 Physicochemical Interactions in Lithium-Sulfur Battery Electrodes -- 3.2.3 Multiphase, Multicomponent Transport in Polymer Electrolyte Fuel Cells -- 3.3 Mesoscale Modeling with Case Studies in Exemplar Electrochemical Systems -- 3.3.1 Lithium-Ion Batteries 001461545 506__ $$aAccess limited to authorized users. 001461545 520__ $$aThis edited volume, with contributions from the Computer Aided Engineering for Batteries (CAEBAT) program, provides firsthand insights into nuances of implementing battery models in actual geometries. It discusses practical examples and gaps in our understanding, while reviewing in depth the theoretical background and algorithms. Over the last ten years, several world-class academics, automotive original equipment manufacturers (OEMs), battery cell manufacturers and software developers worked together under an effort initiated by the U.S. Department of Energy to develop mature, validated modeling tools to simulate design, performance, safety and life of automotive batteries. Until recently, battery modeling was a niche focus area with a relatively small number of experts. This book opens up the research topic for a broader audience from industry and academia alike. It is a valuable resource for anyone who works on battery engineering but has limited hands-on experience with coding. 001461545 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed March 22, 2023). 001461545 650_0 $$aElectric batteries$$xMathematical models. 001461545 650_0 $$aComputer-aided engineering. 001461545 655_0 $$aElectronic books. 001461545 7001_ $$aSanthanagopalan, Shriram,$$eeditor. 001461545 77608 $$iPrint version:$$aSanthanagopalan, Shriram$$tComputer Aided Engineering of Batteries$$dCham : Springer International Publishing AG,c2023$$z9783031176067 001461545 830_0 $$aModern aspects of electrochemistry ;$$vno. 62. 001461545 852__ $$bebk 001461545 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-031-17607-4$$zOnline Access$$91397441.1 001461545 909CO $$ooai:library.usi.edu:1461545$$pGLOBAL_SET 001461545 980__ $$aBIB 001461545 980__ $$aEBOOK 001461545 982__ $$aEbook 001461545 983__ $$aOnline 001461545 994__ $$a92$$bISE