TY - GEN AB - This book focuses on the nonlinear dynamics based on the vector fields with univariate quadratic functions. This book is a unique monograph for two-dimensional quadratic nonlinear systems. It provides different points of view about nonlinear dynamics and bifurcations of the quadratic dynamical systems. Such a two-dimensional dynamical system is one of simplest dynamical systems in nonlinear dynamics, but the local and global structures of equilibriums and flows in such two-dimensional quadratic systems help us understand other nonlinear dynamical systems, which is also a crucial step toward solving the Hilberts sixteenth problem. Possible singular dynamics of the two-dimensional quadratic systems are discussed in detail. The dynamics of equilibriums and one-dimensional flows in two-dimensional systems are presented. Saddle-sink and saddle-source bifurcations are discussed, and saddle-center bifurcations are presented. The infinite-equilibrium states are switching bifurcations for nonlinear systems. From the first integral manifolds, the saddle-center networks are developed, and the networks of saddles, source, and sink are also presented. This book serves as a reference book on dynamical systems and control for researchers, students, and engineering in mathematics, mechanical, and electrical engineering. AU - Luo, Albert C. J., CN - QA402 DO - 10.1007/978-981-16-7873-8 DO - doi ID - 1463452 KW - Nonlinear systems. KW - Vector fields. KW - Computational complexity. LK - https://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-981-16-7873-8 N2 - This book focuses on the nonlinear dynamics based on the vector fields with univariate quadratic functions. This book is a unique monograph for two-dimensional quadratic nonlinear systems. It provides different points of view about nonlinear dynamics and bifurcations of the quadratic dynamical systems. Such a two-dimensional dynamical system is one of simplest dynamical systems in nonlinear dynamics, but the local and global structures of equilibriums and flows in such two-dimensional quadratic systems help us understand other nonlinear dynamical systems, which is also a crucial step toward solving the Hilberts sixteenth problem. Possible singular dynamics of the two-dimensional quadratic systems are discussed in detail. The dynamics of equilibriums and one-dimensional flows in two-dimensional systems are presented. Saddle-sink and saddle-source bifurcations are discussed, and saddle-center bifurcations are presented. The infinite-equilibrium states are switching bifurcations for nonlinear systems. From the first integral manifolds, the saddle-center networks are developed, and the networks of saddles, source, and sink are also presented. This book serves as a reference book on dynamical systems and control for researchers, students, and engineering in mathematics, mechanical, and electrical engineering. SN - 9789811678738 SN - 9811678731 T1 - Two-dimensional quadratic nonlinear systems. TI - Two-dimensional quadratic nonlinear systems. UR - https://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-981-16-7873-8 ER -