001463711 000__ 06067cam\a2200649\i\4500 001463711 001__ 1463711 001463711 003__ OCoLC 001463711 005__ 20230601003333.0 001463711 006__ m\\\\\o\\d\\\\\\\\ 001463711 007__ cr\cn\nnnunnun 001463711 008__ 230506s2023\\\\si\a\\\\ob\\\\000\0\eng\d 001463711 019__ $$a1378096983 001463711 020__ $$a9789819905102$$qelectronic book 001463711 020__ $$a9819905109$$qelectronic book 001463711 020__ $$z9789819905096 001463711 020__ $$z9819905095 001463711 0247_ $$a10.1007/978-981-99-0510-2$$2doi 001463711 035__ $$aSP(OCoLC)1378390311 001463711 040__ $$aEBLCP$$beng$$erda$$cEBLCP$$dYDX$$dGW5XE$$dEBLCP$$dYDX 001463711 049__ $$aISEA 001463711 050_4 $$aTP359.H8$$bP46 2023 001463711 08204 $$a665.8/10286$$223/eng/20230510 001463711 24500 $$aPhoto-driven seawater splitting for hydrogen production /$$cXiao-Yu Yang, editor. 001463711 264_1 $$aSingapore :$$bSpringer,$$c[2023] 001463711 300__ $$a1 online resource (ix, 400 pages) :$$billustrations (some color) 001463711 336__ $$atext$$btxt$$2rdacontent 001463711 337__ $$acomputer$$bc$$2rdamedia 001463711 338__ $$aonline resource$$bcr$$2rdacarrier 001463711 500__ $$a4.2 Electrocatalytic Seawater Splitting 001463711 504__ $$aIncludes bibliographical references. 001463711 5050_ $$aIntro -- Acknowledgement -- Contents -- About the Editor -- Electrocatalytic Seawater Splitting -- 1 Preface -- 2 Principles of Electrocatalytic SW Splitting -- 2.1 The Basic Principles for Electrocatalytic SW Splitting -- 2.2 Features of Electrocatalytic SW Splitting -- 3 Materials Used for the HER in SW -- 3.1 Noble Metal-Based Materials -- 3.2 Non-noble Metal-Based Materials -- 4 Materials Used for OER in SW -- 4.1 Metal Oxides or (Oxy)hydroxides -- 4.2 Metal Nitrides -- 4.3 Metal Sulfides -- 4.4 Compounds and Others -- 5 Bifunctional Materials Used for HER/OER in SW -- 5.1 Metals 001463711 5058_ $$a5.2 Metal Oxides or (Oxy)hydroxides -- 5.3 Metal Nitrides -- 5.4 Metal Phosphides -- 5.5 Metal Chalcogenides -- 5.6 Compounds -- 6 Industrialization -- 6.1 Electrolyzers -- 6.2 Purification Technique and Cost Analysis -- 6.3 SW Reverse Osmosis Coupled with Water Electrolysis -- 7 Conclusion -- 8 Outlook -- References -- Photocatalytic Seawater Splitting -- 1 Preface -- 2 Principles -- 2.1 Mechanism for H2 Production in PCSW Systems -- 2.2 Measurement of the Performance of PCWS Systems -- 2.3 Features and Effects on the Performance -- 3 Materials Used for PCSS 001463711 5058_ $$a3.1 Introduction (Material Type, Synthesis, Structure, Characteristic Properties, and Performance in Seawater Splitting) -- 3.2 TiO2-based Materials -- 3.3 Polymer-Based Materials -- 3.4 Solid Solution-Based Materials -- 3.5 Other Types of Materials -- 4 Industrialization -- 4.1 Introduction -- 4.2 Economical Costs versus Practical Value -- 4.3 Large-Scale Synthesis of Photocatalysts -- 4.4 System Design -- 4.5 Technology Cost Competitiveness -- 5 Perspectives -- 6 Conclusion -- References -- Photoelectrocatalytic Seawater Splitting -- 1 Preface 001463711 5058_ $$a2 Principles Serving as the Foundation of Photoelectrocatalytic Water Splitting -- 2.1 Introduction -- 2.2 Mechanism of PEC Water Splitting -- 2.3 Features of PEC Water Splitting and Effects on the Performance -- 3 Materials Used in PEC Seawater Splitting Systems -- 3.1 Introduction -- 3.2 Understanding the PEC SW Splitting Mechanisms -- 3.3 Metal Oxides Materials for Seawater Splitting -- 3.4 Non-oxide Photoelectrodes for Seawater Splitting -- 4 Implementation -- 4.1 Introduction -- 4.2 Efficiency and Cost -- 4.3 PEC Systems and Devices -- 5 Challenges 001463711 5058_ $$a5.1 Unassisted STH Conversion Inefficiency -- 5.2 Self-oxidation/reduction Promoted Photocorrosion -- 5.3 Scale-Up for Creating Practical PEC Devices -- 6 Summary and Outlook -- References -- Photovoltaic Electrocatalytic Seawater Splitting -- 1 Introduction -- 2 Principles -- 2.1 PV Cells -- 2.2 Electrocatalytic Seawater Splitting -- 2.3 Historical Development PVEC Seawater Splitting Systems -- 3 Progress Made in Designing Efficient PVEC Seawater Splitting Systems -- 3.1 Metals -- 3.2 Intermetallic Compounds -- 3.3 Metal/Intermetallic Composites -- 4 Industrialization -- 4.1 PV Cells 001463711 506__ $$aAccess limited to authorized users. 001463711 520__ $$aThis book presents photo-driven seawater splitting technologies for hydrogen production. This technology is considered as a winwin interplay for both the utilization of solar energy as the most renewable energy and seawater as the most hydrogen source. The book also discusses topics from raw materials selection, characterization and mechanistic insights to the latest research developments in response to the need for environmentally friendly and low-carbon industries. In addition, it provides insights into a most attractive energy-conversion and storage cascade by combining solar energy and a hydrogen system. Given its scope, this book appeals to a broad readership, particularly professionals at universities and scientific research institutes, as well as practitioners in industry. 001463711 588__ $$aDescription based on online resource; title from digital title page (viewed on May 26, 2023). 001463711 650_0 $$aHydrogen as fuel. 001463711 650_0 $$aWater$$xElectrolysis. 001463711 655_0 $$aElectronic books. 001463711 7001_ $$aYang, Xiao-Yu,$$eeditor. 001463711 77608 $$iPrint version:$$aYang, Xiao-Yu$$tPhoto-Driven Seawater Splitting for Hydrogen Production$$dSingapore : Springer,c2023$$z9789819905096 001463711 852__ $$bebk 001463711 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-981-99-0510-2$$zOnline Access$$91397441.1 001463711 909CO $$ooai:library.usi.edu:1463711$$pGLOBAL_SET 001463711 980__ $$aBIB 001463711 980__ $$aEBOOK 001463711 982__ $$aEbook 001463711 983__ $$aOnline 001463711 994__ $$a92$$bISE