001467664 000__ 06274cam\\2200757\a\4500 001467664 001__ 1467664 001467664 003__ OCoLC 001467664 005__ 20230707003333.0 001467664 006__ m\\\\\o\\d\\\\\\\\ 001467664 007__ cr\cn\nnnunnun 001467664 008__ 110602s2011\\\\nyu\\\\\ob\\\\001\0\eng\d 001467664 010__ $$z 2011926587 001467664 019__ $$a726693504$$a771411570$$a771411571$$a974489077$$a988767467$$a990423803$$a1005821368$$a1069566376$$a1111014465$$a1112532732$$a1162752653$$a1204024652$$a1259092245$$a1357632430 001467664 020__ $$a9781441994677$$q(electronic bk.) 001467664 020__ $$a144199467X$$q(electronic bk.) 001467664 020__ $$a9781441994660 001467664 020__ $$a1441994661 001467664 020__ $$a3319483110 001467664 020__ $$a9783319483115 001467664 020__ $$z1461428696 001467664 020__ $$z1441994688 001467664 020__ $$z3319483102 001467664 0247_ $$a10.1007/978-1-4419-9467-7$$2doi 001467664 035__ $$aSP(OCoLC)728098436 001467664 040__ $$aGW5XE$$beng$$epn$$cGW5XE$$dOCLCQ$$dE7B$$dYDXCP$$dKSU$$dOCLCQ$$dOCLCF$$dVT2$$dEBLCP$$dDEBSZ$$dOCLCQ$$dIDEBK$$dN$T$$dOCLCQ$$dZ5A$$dLIP$$dOCLCQ$$dESU$$dOCLCQ$$dIOG$$dCEF$$dU3W$$dAU@$$dWYU$$dYOU$$dOCLCQ$$dLEAUB$$dOL$$$dOCLCQ$$dDCT$$dERF$$dOCLCQ$$dWURST$$dUKAHL$$dAJS$$dOCLCQ$$dOCLCO$$dOCLCQ$$dINARC 001467664 049__ $$aISEA 001467664 050_4 $$aQA322.4$$b.B38 2011 001467664 08204 $$a515/.733$$222 001467664 1001_ $$aBauschke, Heinz H. 001467664 24510 $$aConvex analysis and monotone operator theory in hilbert spaces /$$cHeinz H. Bauschke, Patrick L. Combettes. 001467664 260__ $$aNew York :$$bSpringer,$$c©2011. 001467664 300__ $$a1 online resource (xvi, 468 pages) 001467664 336__ $$atext$$btxt$$2rdacontent 001467664 337__ $$acomputer$$bc$$2rdamedia 001467664 338__ $$aonline resource$$bcr$$2rdacarrier 001467664 347__ $$atext file 001467664 347__ $$bPDF 001467664 4901_ $$aCMS books in mathematics 001467664 504__ $$aIncludes bibliographical references and index. 001467664 5050_ $$aBackground -- Hilbert Spaces -- Convex sets -- Convexity and Nonexpansiveness -- Fejér Monotonicity and Fixed Point Iterations -- Convex Cones and Generalized Interiors -- Support Functions and Polar Sets -- Convex Functions -- Lower Semicontinuous Convex Functions -- Convex Functions: Variants -- Convex Variational Problems -- Infimal Convolution -- Conjugation -- Further Conjugation Results -- Fenchel-Rockafellar Duality -- Subdifferentiability -- Differentiability of Convex Functions -- Further Differentiability Results -- Duality in Convex Optimization -- Monotone Operators -- Finer Properties of Monotone Operators -- Stronger Notions of Monotonicity -- Resolvents of Monotone Operators -- Sums of Monotone Operators.-Zeros of Sums of Monotone Operators -- Fermat's Rule in Convex Optimization -- Proximal Minimization Projection Operators -- Best Approximation Algorithms -- Bibliographical Pointers -- Symbols and Notation -- References. 001467664 506__ $$aAccess limited to authorized users. 001467664 520__ $$aThis book presents a largely self-contained account of the main results of convex analysis, monotone operator theory, and the theory of nonexpansive operators in the context of Hilbert spaces. Unlike existing literature, the novelty of this book, and indeed its central theme, is the tight interplay among the key notions of convexity, monotonicity, and nonexpansiveness. The presentation is accessible to a broad audience and attempts to reach out in particular to the applied sciences and engineering communities, where these tools have become indispensable. Graduate students and researchers in pure and applied mathematics will benefit from this book. It is also directed to researchers in engineering, decision sciences, economics, and inverse problems, and can serve as a reference book. Author Information: Heinz H. Bauschke is a Professor of Mathematics at the University of British Columbia, Okanagan campus (UBCO) and currently a Canada Research Chair in Convex Analysis and Optimization. He was born in Frankfurt where he received his "Diplom-Mathematiker (mit Auszeichnung)" from Goethe Universität in 1990. He defended his Ph. D. thesis in Mathematics at Simon Fraser University in 1996 and was awarded the Governor General's Gold Medal for his graduate work. After a NSERC Postdoctoral Fellowship spent at the University of Waterloo, at the Pennsylvania State University, and at the University of California at Santa Barbara, Dr. Bauschke became College Professor at Okanagan University College in 1998. He joined the University of Guelph in 2001, and he returned to Kelowna in 2005, when Okanagan University College turned into UBCO. In 2009, he became UBCO's first "Researcher of the Year". Patrick L. Combettes received the Brevet d'Études du Premier Cycle from Académie de Versailles in 1977 and the Ph. D. degree from North Carolina State University in 1989. In 1990, he joined the City College and the Graduate Center of the City University of New York where he became a Full Professor in 1999. Since 1999, he has been with the Faculty of Mathematics of Université Pierre et Marie Curie -- Paris 6, laboratoire Jacques-Louis Lions, where he is presently a Professeur de Classe Exceptionnelle. He was elected Fellow of the IEEE in 2005 001467664 546__ $$aEnglish. 001467664 588__ $$aDescription based on print version record. 001467664 650_0 $$aHilbert space. 001467664 650_0 $$aMonotone operators. 001467664 650_6 $$aEspace de Hilbert. 001467664 650_6 $$aOpérateurs monotones. 001467664 655_0 $$aElectronic books. 001467664 7001_ $$aCombettes, Patrick L. 001467664 77608 $$iPrint version:$$aBauschkle, Heinz.$$tConvex analysis and monotone operator theory in hilbert spaces.$$dNew York : Springer, ©2011$$z1441994661$$w(DLC) 2011926587$$w(OCoLC)706920487 001467664 830_0 $$aCMS books in mathematics. 001467664 852__ $$bebk 001467664 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-319-48311-5$$zOnline Access$$91397441.1 001467664 909CO $$ooai:library.usi.edu:1467664$$pGLOBAL_SET 001467664 980__ $$aBIB 001467664 980__ $$aEBOOK 001467664 982__ $$aEbook 001467664 983__ $$aOnline 001467664 994__ $$a92$$bISE