001467768 000__ 06071cam\\22006497a\4500 001467768 001__ 1467768 001467768 003__ OCoLC 001467768 005__ 20230707003338.0 001467768 006__ m\\\\\o\\d\\\\\\\\ 001467768 007__ cr\un\nnnunnun 001467768 008__ 230506s2023\\\\si\\\\\\ob\\\\000\0\eng\d 001467768 019__ $$a1378292162 001467768 020__ $$a9789819906819$$q(electronic bk.) 001467768 020__ $$a9819906814$$q(electronic bk.) 001467768 020__ $$z9819906806 001467768 020__ $$z9789819906802 001467768 0247_ $$a10.1007/978-981-99-0681-9$$2doi 001467768 035__ $$aSP(OCoLC)1378391097 001467768 040__ $$aEBLCP$$beng$$cEBLCP$$dYDX$$dGW5XE$$dEBLCP 001467768 049__ $$aISEA 001467768 050_4 $$aTL3250 001467768 08204 $$a629.47/42$$223/eng/20230516 001467768 1001_ $$aHu, Qinglei. 001467768 24510 $$aIntelligent autonomous control of spacecraft with multiple constraints /$$cQinglei Hu, Xiaodong Shao, Lei Guo. 001467768 260__ $$aSingapore :$$bSpringer,$$c2023. 001467768 300__ $$a1 online resource (346 p.) 001467768 500__ $$a6 Reinforcement Learning-Based Dynamic Control Allocation for Spacecraft Attitude Stabilization 001467768 504__ $$aReferences -- 5 Intelligent Fault Diagnosis and Fault-Tolerant Control of Spacecraft -- 5.1 Introduction -- 5.2 Preliminaries -- 5.3 Disturbance Observation Scheme -- 5.4 Fault Diagnosis Scheme -- 5.4.1 Fault Diagnosis Using Addaptive Estimator -- 5.4.2 Fault Diagnosis Using Neural Network -- 5.5 Fault-Tolerant Control -- 5.6 Numerical Simulation -- 5.6.1 Disturbances Model -- 5.6.2 Simulation Conditions -- 5.6.3 Simulation of Disturbance Observation Scheme -- 5.6.4 Simulation of Fault Diagnosis Scheme -- 5.6.5 Simulation of Fault-Tolerant Control Scheme -- 5.7 Summary -- References 001467768 504__ $$aIncludes bibliographical references. 001467768 5050_ $$aIntro -- Preface -- Acknowledgements -- Contents -- Acronyms -- 1 Introduction -- 1.1 Review of Spacecraft Motion Planning -- 1.1.1 Geometric Method -- 1.1.2 Artificial Potential Function Method -- 1.1.3 Discretized Method -- 1.1.4 Randomized Planning Method -- 1.1.5 Optimization-Based Method -- 1.1.6 Artificial Intelligence-Based Method -- 1.2 Review of Spacecraft Attitude and Position Control -- 1.2.1 Adaptive Control of Spacecraft -- 1.2.2 Anti-Disturbance Control of Spacecraft -- 1.2.3 Fault-Tolerant Control of Spacecraft -- 1.2.4 State-Constrained Control of Spacecraft 001467768 5058_ $$a1.2.5 Intelligent Control of Spacecraft -- 1.3 Contents of the Book -- References -- 2 Dynamics Modeling and Mathematical Preliminaries -- 2.1 Introduction -- 2.2 Notations -- 2.3 Coordinate Frames -- 2.4 Mathematical Models of Spacecraft Dynamics -- 2.4.1 Spacecraft Attitude Dynamics -- 2.4.2 Spacecraft Relative Position Dynamics -- 2.4.3 Spacecraft Relative Position-Attitude Coupled Dynamics -- 2.4.4 Dual-Quaternion-Based Spacecraft Relative Motion Dynamics -- 2.5 Lyapunov Stability Theory -- References -- 3 Data-Driven Adaptive Control for Spacecraft Constrained Reorientation 001467768 5058_ $$a3.1 Introduction -- 3.2 Problem Statement -- 3.2.1 Attitude Constraints -- 3.2.2 Angular Velocity Constraints -- 3.2.3 Problem Statement and Challenges -- 3.3 I&I Adaptive Attitude Control -- 3.3.1 Regressor Reconfiguration -- 3.3.2 I&I Adaptive Controller Design -- 3.4 Data-Driven I&I Adaptive Control -- 3.4.1 Filtered System Dynamics -- 3.4.2 Data-Driven Adaptive Extension -- 3.5 Numerical Simulations -- 3.5.1 Performance Validation -- 3.5.2 Comparison Results -- 3.5.3 Robustness Tests -- 3.6 Hardware-in-Loop Experiments -- 3.7 Summary -- References 001467768 5058_ $$a4 Learning-Based Fault-Tolerant Control for Spacecraft Constrained Reorientation Maneuvers -- 4.1 Introduction -- 4.2 Adaptive FTC for Spacecraft Constrained Reorientation -- 4.2.1 Problem Formulation -- 4.2.2 Adaptive FTC Under Attitude Constraints -- 4.2.3 Adaptive FTC Under Attitude and Angular Velocity Constraints -- 4.2.4 Numerical Simulations -- 4.3 Learning-Based Optimal FTC for Spacecraft Constrained Reorientation -- 4.3.1 Problem Formulation -- 4.3.2 Constrained Optimal FTC Design -- 4.3.3 Single-Critic NN Design and Stability Analysis -- 4.3.4 Numerical Simulations -- 4.4 Summary 001467768 506__ $$aAccess limited to authorized users. 001467768 520__ $$aThis book explores the intelligent autonomous control problems for spacecraft with multiple constraints, such as pointing/path constraints, linear/angular velocity constraints, performance constraints, etc. It provides an almost self-contained presentation of dynamics modeling, controller design and analysis, as well as simulation studies. The book aims to offer a valuable guide for researchers and aerospace engineers to address the theoretical and technical difficulties in different applications, ranging from spacecraft attitude reorientation and tracking to spacecraft proximity operations, and is mainly intended for technical and engineering staff engaged in spacecraft dyanmics and control areas. 001467768 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed May 16, 2023). 001467768 650_0 $$aSpace vehicles$$xAutomatic control. 001467768 650_0 $$aIntelligent agents (Computer software) 001467768 650_0 $$aConstraints (Artificial intelligence) 001467768 655_0 $$aElectronic books. 001467768 7001_ $$aShao, Xiaodong. 001467768 7001_ $$aGuo, Lei. 001467768 77608 $$iPrint version:$$aHu, Qinglei$$tIntelligent Autonomous Control of Spacecraft with Multiple Constraints$$dSingapore : Springer,c2023$$z9789819906802 001467768 852__ $$bebk 001467768 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-981-99-0681-9$$zOnline Access$$91397441.1 001467768 909CO $$ooai:library.usi.edu:1467768$$pGLOBAL_SET 001467768 980__ $$aBIB 001467768 980__ $$aEBOOK 001467768 982__ $$aEbook 001467768 983__ $$aOnline 001467768 994__ $$a92$$bISE