001468495 000__ 06076cam\\22006377a\4500 001468495 001__ 1468495 001468495 003__ OCoLC 001468495 005__ 20230707003254.0 001468495 006__ m\\\\\o\\d\\\\\\\\ 001468495 007__ cr\un\nnnunnun 001468495 008__ 230610s2023\\\\sz\\\\\\ob\\\\000\0\eng\d 001468495 019__ $$a1380994377 001468495 020__ $$a9783031257711$$q(electronic bk.) 001468495 020__ $$a3031257715$$q(electronic bk.) 001468495 020__ $$z3031257707 001468495 020__ $$z9783031257704 001468495 0247_ $$a10.1007/978-3-031-25771-1$$2doi 001468495 035__ $$aSP(OCoLC)1381095862 001468495 040__ $$aEBLCP$$beng$$cEBLCP$$dGW5XE$$dYDX 001468495 049__ $$aISEA 001468495 050_4 $$aQC793.5.F42 001468495 08204 $$a539.7/21$$223/eng/20230613 001468495 1001_ $$aSánchez Martínez, Miguel Ángel. 001468495 24510 $$aLinear and nonlinear optical responses of chiral multifold semimetals /$$cMiguel Ángel Sánchez Martínez. 001468495 260__ $$aCham :$$bSpringer,$$c2023. 001468495 300__ $$a1 online resource (128 p.). 001468495 4901_ $$aSpringer Theses 001468495 500__ $$a"Doctoral thesis accepted by Université Grenoble Alpes, Grenodle, France." 001468495 500__ $$aAppendix C Imaginary Part of the Optical Conductivity from the Kramers-Kronig Relations 001468495 504__ $$aIncludes bibliographical references. 001468495 5050_ $$6880-01$$aIntro -- Supervisor's Foreword -- Abstract -- Acknowledgments -- Contents -- Abbreviations -- 1 Introduction -- 1.1 Experimental Signatures of Topological Metals -- 1.1.1 ARPES and the Discovery of Weyl Semimetals -- 1.1.2 The Chiral Anomaly and Negative Magnetoresistance of Weyl Semimetals -- 1.1.3 Optical Responses as Probes for Topological Phases -- 1.2 Beyond Weyl Crossings: Multifold Fermions -- 1.3 Structure of the Thesis -- References -- 2 Chiral Multifold Fermions -- 2.1 Weyl Fermions -- 2.2 The Classification of Chiral Multifold Fermions -- 2.2.1 Double-Weyl Fermion 001468495 5058_ $$a2.2.2 Threefold Fermion -- 2.2.3 Sixfold Fermion -- 2.2.4 Fourfold Fermion -- 2.3 Material-Oriented Tight-Binding Models of Chiral Multifold Fermions -- 2.3.1 Space Group 199 -- 2.3.2 Space Group 198 and Candidate Materials -- 2.4 Conclusions -- References -- 3 Linear Optical Conductivity of Chiral Multifold Fermions: kcdotp and Tight-Binding Models -- 3.1 Linear Optical Response in the Length Gauge -- 3.2 Optical Fingerprints in the Multifold kcdotp Models -- 3.2.1 Optical Conductivity of Fully Rotationally Symmetric Models -- 3.2.2 Optical Conductivity of Non-symmetric Low-Energy Models 001468495 5058_ $$a3.3 Imaginary Part of the Optical Conductivity and Sum Rules -- 3.4 Optical Conductivity of Realistic Tight-Binding Models -- 3.4.1 Space Group 199 -- 3.4.2 Space Group 198: RhSi -- 3.5 Conclusions -- References -- 4 Linear Optical Conductivity of CoSi and RhSi: Experimental Fingerprints of Chiral Multifold Fermions in Real Materials -- 4.1 Introduction -- 4.2 CoSi -- 4.2.1 Experimental Features of the Optical Conductivity -- 4.2.2 Low-Energy Regime: kcdotp and Tight-Binding Models -- 4.2.3 The Role of Spin-Orbit Coupling and the Spin-3/2 Multifold Fermion -- 4.2.4 Summary -- 4.3 RhSi 001468495 5058_ $$a4.3.1 Experimental Features of the Optical Conductivity -- 4.3.2 Low-Energy Regime: kcdotp and Tight-Binding Models -- 4.3.3 Summary -- 4.4 Conclusions -- References -- 5 Nonlinear Optical Responses: Second-Harmonic Generation in RhSi -- 5.1 The Zoo of Nonlinear Responses -- 5.2 The Circular Photogalvanic Effect in RhSi -- 5.2.1 Experimental Features of the Circular Photogalvanic Effect -- 5.2.2 DFT Calculation of Circular Photogalvanic Effect in RhSi -- 5.2.3 Circular Photogalvanic Effect Calculation with a Tight-Binding Model for RhSi -- 5.3 Second-Harmonic Generation in RhSi 001468495 506__ $$aAccess limited to authorized users. 001468495 520__ $$aSince the initial predictions for the existence of Weyl fermions in condensed matter, many different experimental techniques have confirmed the existence of Weyl semimetals. Among these techniques, optical responses have shown a variety of effects associated with the existence of Weyl fermions. In chiral crystals, we find a new type of fermions protected by crystal symmetries the chiral multifold fermions that can be understood as a higher-spin generalization of Weyl fermions. This work analyzes how multifold fermions interact with light and highlights the power of optical responses to identify and characterize multifold fermions and the materials hosting them. In particular, we find optical selection rules, compute the linear optical response of all chiral multifold fermions, and analyze the non-linear optical responses and their relation to the presence of topological bands. Finally, the research presented here analyzes the theoretical foundations and experimental features of optical responses of two multifold semimetals, RhSi and CoSi, connecting the observed features with the theoretical predictions and demonstrating the power of optical responses to understand real-life multifold semimetals. 001468495 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed June 13, 2023). 001468495 650_0 $$aFermions. 001468495 650_0 $$aSemimetals$$xOptical properties. 001468495 655_0 $$aElectronic books. 001468495 77608 $$iPrint version:$$aSánchez Martínez, Miguel Ángel$$tLinear and Nonlinear Optical Responses of Chiral Multifold Semimetals$$dCham : Springer International Publishing AG,c2023$$z9783031257704 001468495 830_0 $$aSpringer theses. 001468495 852__ $$bebk 001468495 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-031-25771-1$$zOnline Access$$91397441.1 001468495 909CO $$ooai:library.usi.edu:1468495$$pGLOBAL_SET 001468495 980__ $$aBIB 001468495 980__ $$aEBOOK 001468495 982__ $$aEbook 001468495 983__ $$aOnline 001468495 994__ $$a92$$bISE