001469461 000__ 03411cam\\2200625Mi\4500 001469461 001__ 1469461 001469461 003__ OCoLC 001469461 005__ 20230803003331.0 001469461 006__ m\\\\\o\\d\\\\\\\\ 001469461 007__ cr\un\nnnunnun 001469461 008__ 230607s2023\\\\sz\\\\\\ob\\\\000\0\eng\d 001469461 019__ $$a1381713790$$a1382626555$$a1388521334$$a1390568099 001469461 020__ $$a9783031214806$$q(electronic bk.) 001469461 020__ $$a3031214803$$q(electronic bk.) 001469461 020__ $$z303121479X 001469461 020__ $$z9783031214790 001469461 0247_ $$a10.1007/978-3-031-21480-6$$2doi 001469461 035__ $$aSP(OCoLC)1381202437 001469461 040__ $$aYDX$$beng$$erda$$cYDX$$dEBLCP$$dGW5XE$$dUKAHL$$dOCLCF$$dYDX 001469461 049__ $$aISEA 001469461 050_4 $$aHD30.2$$b.M34 2023 001469461 08204 $$a650.0285$$223 001469461 1001_ $$aMcGibney, Daniel P.,$$eauthor. 001469461 24510 $$aApplied linear regression for business analytics with R :$$ba practical guide to data science with case studies /$$cDaniel P. McGibney. 001469461 264_1 $$aCham, Switzerland :$$bSpringer,$$c[2023] 001469461 300__ $$a1 online resource. 001469461 336__ $$atext$$btxt$$2rdacontent 001469461 337__ $$acomputer$$bc$$2rdamedia 001469461 338__ $$aonline resource$$bcr$$2rdacarrier 001469461 4901_ $$aInternational Series in Operations Research & Management Science ;$$vvolume 337 001469461 504__ $$aIncludes bibliographical references. 001469461 5050_ $$a1. Introduction -- 2. Basic Statistics and Functions using R -- 3. Regression Fundamentals -- 4. Simple Linear Regression -- 5. Multiple Regression -- 6. Estimation Intervals and Analysis of Variance -- 7. Predictor Variable Transformations -- 8. Model Diagnostics -- 9. Variable Selection. 001469461 506__ $$aAccess limited to authorized users. 001469461 520__ $$aApplied Linear Regression for Business Analytics with R introduces regression analysis to business students using the R programming language with a focus on illustrating and solving real-time, topical problems. Specifically, this book presents modern and relevant case studies from the business world, along with clear and concise explanations of the theory, intuition, hands-on examples, and the coding required to employ regression modeling. Each chapter includes the mathematical formulation and details of regression analysis and provides in-depth practical analysis using the R programming language. 001469461 588__ $$aDescription based on online resource; title from digital title page (viewed on July 18, 2023). 001469461 650_0 $$aBusiness$$xData processing. 001469461 650_0 $$aR (Computer program language) 001469461 650_0 $$aRegression analysis. 001469461 655_0 $$aElectronic books. 001469461 77608 $$iPrint version: $$z303121479X$$z9783031214790$$w(OCoLC)1347786097 001469461 830_0 $$aInternational series in operations research & management science ;$$v337. 001469461 852__ $$bebk 001469461 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-031-21480-6$$zOnline Access$$91397441.1 001469461 909CO $$ooai:library.usi.edu:1469461$$pGLOBAL_SET 001469461 980__ $$aBIB 001469461 980__ $$aEBOOK 001469461 982__ $$aEbook 001469461 983__ $$aOnline 001469461 994__ $$a92$$bISE