Linked e-resources
Details
Table of Contents
Chapter 1. Basics
Chapter 2. Topic Models
3. Chapter 3. Pre-processing of Training Data
Chapter 4. Expectation Maximization
Chapter 5. Markov Chain Monte Carlo Sampling
Chapter 6. Variational Inference
Chapter 7. Distributed Training
Chapter 8. Parameter Setting
Chapter 9. Topic Deduplication and Model Compression
Chapter 10. Applications.
Chapter 2. Topic Models
3. Chapter 3. Pre-processing of Training Data
Chapter 4. Expectation Maximization
Chapter 5. Markov Chain Monte Carlo Sampling
Chapter 6. Variational Inference
Chapter 7. Distributed Training
Chapter 8. Parameter Setting
Chapter 9. Topic Deduplication and Model Compression
Chapter 10. Applications.