001469685 000__ 05815cam\\2200637\i\4500 001469685 001__ 1469685 001469685 003__ OCoLC 001469685 005__ 20230803003342.0 001469685 006__ m\\\\\o\\d\\\\\\\\ 001469685 007__ cr\un\nnnunnun 001469685 008__ 230616s2023\\\\si\a\\\\ob\\\\000\0\eng\d 001469685 019__ $$a1382692505 001469685 020__ $$a9789811962462$$q(electronic bk.) 001469685 020__ $$a9811962464$$q(electronic bk.) 001469685 020__ $$z9789811962455 001469685 020__ $$z9811962456 001469685 0247_ $$a10.1007/978-981-19-6246-2$$2doi 001469685 035__ $$aSP(OCoLC)1382524969 001469685 040__ $$aYDX$$beng$$erda$$epn$$cYDX$$dGW5XE$$dEBLCP 001469685 049__ $$aISEA 001469685 050_4 $$aTA418.9.N35 001469685 08204 $$a620.1/1597$$223/eng/20230622 001469685 1001_ $$aSigov, Alexander S.,$$eauthor. 001469685 24510 $$aMultilayer magnetic nanostructures :$$bproperties and applications /$$cAlexander S. Sigov. 001469685 264_1 $$aSingapore :$$bSpringer,$$c[2023] 001469685 264_4 $$c©2023 001469685 300__ $$a1 online resource (xi, 137 pages) :$$billustrations (some color). 001469685 336__ $$atext$$btxt$$2rdacontent 001469685 337__ $$acomputer$$bc$$2rdamedia 001469685 338__ $$aonline resource$$bcr$$2rdacarrier 001469685 4901_ $$aSpringer aerospace technology 001469685 504__ $$aIncludes bibliographical references. 001469685 5050_ $$6880-01$$aIntro -- Introduction -- Contents -- About the Author -- Abbreviations -- 1 Physical Foundations for the Formation of Magnetic Nanostructures -- 1.1 The Phenomenon of Giant Magnetoresistance -- 1.2 GMR Theory -- 1.3 Tunnel Magnetoresistance -- 1.4 Spin-Polarized Current -- 1.5 MRAM (Magnetoresistive Random Access Memory) -- 1.6 Superparamagnetic Limit -- References -- 2 Frustrations of Exchange Interaction -- 2.1 Why Does Spin Feel Hopeless? -- 2.2 Frustrations in a System with a Non-magnetic Layer -- 2.3 Frustrations in the Ferromagnet-Antiferromagnet System 001469685 5058_ $$a4.4 Phase Diagram -- 4.5 Experimental Results -- References -- 5 Compensated Slice -- 5.1 Spin-flop Orientation -- 5.2 The Case of "Charged" Edges of Atomic Steps at the Interface "Ferromagnet-Antiferromagnet" -- 5.2.1 Case of Weak Roughness -- 5.2.2 A Case of Strong Roughness. Thick Layer -- 5.2.3 A Case of Strong Roughness. Thin Layer -- References -- 6 Behavior in a Magnetic Field -- 6.1 Exchange Bias. Uncompensated Slice -- 6.2 Exchange Bias. Compensated Slice -- 6.3 A Substrate of Finite Thickness. "Switching" the Nanodomain State -- 6.3.1 The Area of Strong Fields 001469685 5058_ $$a7.5 Behavior of a Spin-Valve Structure in a Magnetic Field in the Region of Applicability of the Exchange Approximation -- 7.6 Comparison with the Experiment. Magnetic Phase Diagram of a Spin-Valve Structure with an Antiferromagnetic Oxide Layer -- 7.6.1 Phase Diagram -- 7.6.2 Comparison with the Experiment -- References -- 8 Surface Spin-flop Transition in Antiferromagnet -- 8.1 Volume Spin-flop Transition -- 8.2 The Case of an Atomically Smooth Surface -- 8.3 Size Effects in a Plane-parallel Layer of an Antiferromagnet with Smooth Surfaces -- 8.3.1 Even Number of Atomic Planes 001469685 506__ $$aAccess limited to authorized users. 001469685 520__ $$aThis book presents relevant issues for the development of computer technology in general and civil aviation in particular, related to the promising task of developing magnetoresistive memory. In modern conditions of constantly increasing air traffic intensity, it is necessary to use both on board the aircraft and in ground services computing devices that guarantee the required level of flight safety. The book shows that in the multilayer ferromagnet-antiferromagnet system, the behavior of magnetic parameters in layers of nanometer thickness is largely determined by frustrations. The monograph provides not only a complete analysis of the current state of magnetic nanostructures but also predicts new types generated by exchange interaction frustrations. The phase diagrams "layer thickness (layers)roughness" of a thin ferromagnetic film on an antiferromagnetic substrate and a spin-valve system ferromagnet-antiferromagnet-ferromagnet are constructed taking into account the energy of single-ion anisotropy. The book presents experimental results that confirm the existence of a new type of domain walls. It is shown that the detected domain walls appear exactly at the locations of the atomic steps, and their thickness increases in proportion to the film thickness with a proportionality coefficient of the order of one. Special attention using mathematical models is placed for optimal orientation of spins at a smooth interface in the case of a compensated cross section of an antiferromagnet and an uncompensated cross section. The constructed phase diagrams and models are compared with the experiments. It is thus concluded that scanning tunneling microscopy (STM) makes it possible to study domain walls generated by frustration on the surface of the structure. 001469685 650_0 $$aNanostructured materials$$xMagnetic properties. 001469685 650_0 $$aThin films, Multilayered. 001469685 655_0 $$aElectronic books. 001469685 77608 $$iPrint version: $$z9811962456$$z9789811962455$$w(OCoLC)1337525151 001469685 830_0 $$aSpringer aerospace technology. 001469685 852__ $$bebk 001469685 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-981-19-6246-2$$zOnline Access$$91397441.1 001469685 909CO $$ooai:library.usi.edu:1469685$$pGLOBAL_SET 001469685 980__ $$aBIB 001469685 980__ $$aEBOOK 001469685 982__ $$aEbook 001469685 983__ $$aOnline 001469685 994__ $$a92$$bISE