001469849 000__ 06124cam\\2200709\i\4500
001469849 001__ 1469849
001469849 003__ OCoLC
001469849 005__ 20230803003349.0
001469849 006__ m\\\\\o\\d\\\\\\\\
001469849 007__ cr\cn\nnnunnun
001469849 008__ 230621s2023\\\\sz\\\\\\ob\\\\000\0\eng\d
001469849 019__ $$a1382525915$$a1382696855
001469849 020__ $$a9783031303371$$q(electronic bk.)
001469849 020__ $$a3031303377$$q(electronic bk.)
001469849 020__ $$z9783031303364
001469849 020__ $$z3031303369
001469849 0247_ $$a10.1007/978-3-031-30337-1$$2doi
001469849 035__ $$aSP(OCoLC)1384442230
001469849 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dYDX$$dEBLCP$$dOCLCF
001469849 049__ $$aISEA
001469849 050_4 $$aHE147.6
001469849 08204 $$a388.3/10285$$223/eng/20230621
001469849 1001_ $$aBhatia, Tanveen Kaur,$$eauthor.
001469849 24510 $$aMore-for-less solutions in fuzzy transportation problems /$$cTanveen Kaur Bhatia, Amit Kumar, Srimantoorao S. Appadoo.
001469849 264_1 $$aCham :$$bSpringer,$$c[2023]
001469849 264_4 $$c©2023
001469849 300__ $$a1 online resource (xiv, 159 pages).
001469849 336__ $$atext$$btxt$$2rdacontent
001469849 337__ $$acomputer$$bc$$2rdamedia
001469849 338__ $$aonline resource$$bcr$$2rdacarrier
001469849 4901_ $$aStudies in fuzziness and soft computing,$$x1860-0808 ;$$vvolume 426
001469849 504__ $$aIncludes bibliographical references.
001469849 5050_ $$aIntro -- Acknowledgements -- Contents -- About the Authors -- 1 Introduction -- 1.1 Origin of More-For-Less Solutions of Transportation Problems -- 1.2 Literature Review -- 1.3 Chapter-Wise Summary -- References -- 2 Mehar Method-I to Find All More-For-Less Solutions of Symmetric Fuzzy Balanced Transportation Problems -- 2.1 Some Basic Definitions -- 2.2 Tabular Representation of Crisp Balanced Transportation Problems -- 2.3 Tabular Representation of Symmetric Triangular Fuzzy Balanced Transportation Problems
001469849 5058_ $$a2.4 Crisp Linear Programming Problems Corresponding to Crisp Balanced Transportation Problems -- 2.5 Fuzzy Linear Programming Problems Corresponding to Symmetric Triangular Fuzzy Balanced Transportation Problems -- 2.6 Crisp Balanced Transportation Problems Equivalent to Symmetric Triangular Fuzzy Balanced Transportation Problems -- 2.7 Proposed Sufficient Condition-I for the Existence of at Least One More-For-Less Solution -- 2.8 Proposed Mehar Method-I -- 2.9 Illustrative Examples -- 2.9.1 All More-For-Less Solutions of an Existing Problem
001469849 5058_ $$a2.9.2 All More-For-Less Solutions of Considered Problem -- 2.10 Results and Discussion -- 2.11 Conclusions -- References -- 3 Mehar Method-II to Find All More-For-Less Solutions of Symmetric Fuzzy Transportation Problems with Mixed Constraints -- 3.1 Tabular Representation of Crisp Transportation Problems with Mixed Constraints -- 3.2 Tabular Representation of Symmetric Triangular Fuzzy Transportation Problems with Mixed Constraints -- 3.3 Crisp Linear Programming Problems Corresponding to Crisp Transportation Problems with Mixed Constraints
001469849 5058_ $$a3.4 Fuzzy Linear Programming Problems Corresponding to Symmetric Triangular Fuzzy Transportation Problems with Mixed Constraints -- 3.5 Crisp Transportation Problems with Mixed Constraints Equivalent to Symmetric Triangular Fuzzy Transportation Problems with Mixed Constraints -- 3.6 Proposed Sufficient Condition-II for the Existence of at Least One More-For-Less Solution -- 3.7 Proposed Mehar Method-II -- 3.8 All More-For-Less Solutions of Existing Problems -- 3.8.1 All More-For-Less Solutions of the First Problem -- 3.8.2 All More-For-Less Solutions of the Second Problem
001469849 5058_ $$a3.9 Results and Discussion -- 3.9.1 Response of the First Question -- 3.9.2 Response of the Second Question -- 3.9.3 Response of the Third Question -- 3.9.4 Response of the Fourth Question -- 3.10 Conclusions -- References -- 4 Mehar Method-III to Find All More-for-Less Solutions of Symmetric Intuitionistic Fuzzy Transportation Problems with Mixed Constraints -- 4.1 Some Basic Definitions -- 4.2 Extended Arithmetic Operations of Triangular Intuitionistic Fuzzy Numbers -- 4.3 Extended Method for Comparing Triangular Intuitionistic Fuzzy Numbers -- 4.4 Some Important Results
001469849 506__ $$aAccess limited to authorized users.
001469849 520__ $$aThis book describes a set of methods for finding more-for-less solutions of various kind of fuzzy transportation problems. Inspired by more-for-less approaches to the basic transportation problem initiated by Abraham Charnes and his collaborators during 1960s and 1970s, this book describes new methods developed by the authors to solve different types of problems, including symmetric balanced fuzzy transportation problems, symmetric intuitionistic fuzzy transportation problems with mixed constraints, and symmetric intuitionistic fuzzy linear fractional transportation problems with mixed constraints. It offers extensive details on their applications to some representative problems, and discusses some future research directions.
001469849 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed June 21, 2023).
001469849 650_0 $$aTransportation$$xData processing.
001469849 650_0 $$aFuzzy mathematics.
001469849 650_0 $$aMathematical optimization.
001469849 655_0 $$aElectronic books.
001469849 7001_ $$aKumar, Amit,$$eauthor.
001469849 7001_ $$aAppadoo, Srimantoorao S.,$$eauthor.
001469849 77608 $$iPrint version: $$z3031303369$$z9783031303364$$w(OCoLC)1372278006
001469849 830_0 $$aStudies in fuzziness and soft computing ;$$vv. 426.$$x1860-0808
001469849 852__ $$bebk
001469849 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-031-30337-1$$zOnline Access$$91397441.1
001469849 909CO $$ooai:library.usi.edu:1469849$$pGLOBAL_SET
001469849 980__ $$aBIB
001469849 980__ $$aEBOOK
001469849 982__ $$aEbook
001469849 983__ $$aOnline
001469849 994__ $$a92$$bISE