001470125 000__ 07396cam\\22006857i\4500 001470125 001__ 1470125 001470125 003__ OCoLC 001470125 005__ 20230803003403.0 001470125 006__ m\\\\\o\\d\\\\\\\\ 001470125 007__ cr\cn\nnnunnun 001470125 008__ 230701s2023\\\\sz\\\\\\ob\\\\001\0\eng\d 001470125 019__ $$a1388206961$$a1389353479 001470125 020__ $$a9783031275722$$qelectronic book 001470125 020__ $$a3031275721$$qelectronic book 001470125 020__ $$z3031275713 001470125 020__ $$z9783031275715 001470125 0247_ $$a10.1007/978-3-031-27572-2$$2doi 001470125 035__ $$aSP(OCoLC)1388497871 001470125 040__ $$aEBLCP$$beng$$erda$$cEBLCP$$dYDX$$dN$T$$dGW5XE 001470125 049__ $$aISEA 001470125 050_4 $$aTA351$$b.L86 2023 001470125 08204 $$a624.171$$223 001470125 1001_ $$aLuongo, Angelo,$$eauthor. 001470125 24510 $$aStability and bifurcation of structures :$$bstatical and dynamical systems /$$cAngelo Luongo, Manuel Ferretti, Simona Di Nino. 001470125 264_1 $$aCham :$$bSpringer,$$c2023. 001470125 300__ $$a1 online resource (712 p.) 001470125 336__ $$atext$$btxt$$2rdacontent 001470125 337__ $$acomputer$$bc$$2rdamedia 001470125 338__ $$aonline resource$$bcr$$2rdacarrier 001470125 500__ $$aEquilibrium Equation for Imperfect System 001470125 504__ $$aIncludes bibliographical references and index. 001470125 5050_ $$aIntro -- Preface -- Contents -- 1 Introduction -- 1.1 Basic Concepts -- 1.2 Overview of the Book -- 1.3 Book Style -- 2 Phenomenological Aspects of Bifurcation of Structures -- 2.1 Introduction -- 2.2 Stability and Bifurcation -- 2.2.1 Equilibrium Points -- 2.2.2 Stability of Equilibrium -- Lagrange-Dirichlet Theorem -- 2.2.3 Bifurcation -- Bifurcation of Equilibrium -- Static and Dynamic Bifurcations -- 2.3 An Example of Static Bifurcation: The Euler Beam -- 2.4 Static Bifurcations of Elastic Structures -- 2.4.1 Fork and Transcritical Bifurcations -- 2.4.2 Snap-Through Phenomenon 001470125 5058_ $$a2.4.3 Interaction Between Simultaneous Modes -- An Example of a Two-Parameter Family: The Compressed Truss -- Structural Optimization in the Linear Optics -- Nonlinear Interaction Between Simultaneous Modes -- 2.5 Dynamic Bifurcations of Elastic Structures Subject to Nonconservative Forces -- 2.5.1 Flutter Induced by Follower Forces -- 2.5.2 Galloping Induced by Aerodynamic Flow -- 2.5.3 Parametric Excitation Induced by Pulsating Loads -- References -- 3 Stability and Bifurcation Linear Analysis -- 3.1 Introduction -- 3.2 Dynamical Systems -- 3.3 Mechanical Systems 001470125 5058_ $$a3.4 Linear Stability Analysis -- 3.4.1 Conservative Systems -- 3.4.2 Circulatory Systems -- 3.4.3 Influence of Damping -- Damped Conservative Systems -- Damped Circulatory Systems -- 3.5 An Illustrative Example: The Planar Mathematical Pendulum -- 3.5.1 Equation of Motion and the Phase Portrait -- Equilibrium Points -- Phase Portrait -- 3.5.2 Local Stability Analysis -- Center Point (Lower Equilibrium Position) -- Saddle Point (Upper Equilibrium Position) -- 3.5.3 Energy Criterion of Stability -- 3.5.4 Effect of Damping -- Equation of Motion -- Local Stability Analysis 001470125 5058_ $$a3.6 Bifurcations of Autonomous Systems -- 3.6.1 Equilibrium Paths -- 3.6.2 Bifurcations from a Trivial Path -- 3.6.3 Bifurcations from a Non-trivial Path -- Linearized Equation of Motion -- Bifurcation Analysis -- 3.6.4 Bifurcation Mechanisms for Conservative and Circulatory Systems, without or with Damping -- Conservative Systems -- Circulatory Systems -- Damped Conservative Systems -- Damped Circulatory Systems -- References -- 4 Buckling and Postbuckling of Conservative Systems -- 4.1 Introduction -- 4.2 Static Analysis of Conservative Systems -- 4.3 Classification of the Equilibrium Points 001470125 5058_ $$a4.4 Numerical Continuation Methods -- 4.4.1 Newton-Raphson Method -- 4.4.2 Sequential Continuation -- Sequential Continuation Failure -- 4.4.3 Arclength Method -- 4.5 Asymptotic Analysis of Bifurcation from Trivial Path -- 4.5.1 Linear Stability Analysis -- Adjacent Equilibrium Criterion -- 4.5.2 Nonlinear Bifurcation Analysis -- Asymptotic Expression of the Bifurcated Path -- Normalization -- Perturbation Equations -- Solution to the Perturbation Equations -- Case of Symmetric Systems -- 4.6 Effect of Imperfections -- 4.6.1 Equilibrium Equations -- Geometric Imperfections -- Load Imperfections 001470125 506__ $$aAccess limited to authorized users. 001470125 520__ $$aThis book overcomes the separation existing in literature between the static and the dynamic bifurcation worlds. It brings together buckling and post-buckling problems with nonlinear dynamics, the bridge being represented by the perturbation method, i.e., a mathematical tool that allows for solving static and dynamic problems virtually in the same way. The book is organized as follows: Chapter one gives an overview; Chapter two illustrates phenomenological aspect of static and dynamic bifurcations; Chapter three deals with linear stability analysis of dynamical systems; Chapter four and five discuss the general theory and present examples of buckling and post-buckling of elastic structures; Chapter six describes a linearized approach to buckling, usually adopted in the technical literature, in which pre-critical deformations are neglected; Chapters seven to ten, analyze elastic and elasto-plastic buckling of planar systems of beams, thin-walled beams and plate assemblies, respectively; Chapters eleven to thirteen, illustrate dynamic instability phenomena, such as flutter induced by follower forces, aeroelastic bifurcations caused by wind flow, and parametric excitation triggered by pulsating loads. Finally, Chapter fourteen discusses a large gallery of solved problems, concerning topics covered in the book. An Appendix presents the Vlasov theory of open thin-walled beams. The book is devoted to advanced undergraduate and graduate students, as well as engineers and practitioners. The methods illustrated here are immediately applicable to model real problems. The Book Introduces, in a simple way, complex concepts of bifurcation theory, by making use of elementary mathematics Gives a comprehensive overview of bifurcation of linear and nonlinear structures, in static and dynamic fields Contains a chapter in which many problems are solved, either analytically or numerically, and results commented. 001470125 588__ $$aDescription based upon online resource; title from PDF title page (viewed July 3rd, 2023). 001470125 650_0 $$aStatics. 001470125 650_0 $$aMechanics, Applied. 001470125 650_0 $$aBuilding materials. 001470125 655_0 $$aElectronic books. 001470125 7001_ $$aFerretti, Manuel,$$eauthor. 001470125 7001_ $$aDi Nino, Simona,$$eauthor. 001470125 77608 $$iPrint version:$$aLuongo, Angelo$$tStability and Bifurcation of Structures$$dCham : Springer International Publishing AG,c2023$$z9783031275715 001470125 852__ $$bebk 001470125 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-031-27572-2$$zOnline Access$$91397441.1 001470125 909CO $$ooai:library.usi.edu:1470125$$pGLOBAL_SET 001470125 980__ $$aBIB 001470125 980__ $$aEBOOK 001470125 982__ $$aEbook 001470125 983__ $$aOnline 001470125 994__ $$a92$$bISE