001471849 000__ 04028cam\\22006257i\4500 001471849 001__ 1471849 001471849 003__ OCoLC 001471849 005__ 20230908003317.0 001471849 006__ m\\\\\o\\d\\\\\\\\ 001471849 007__ cr\cn\nnnunnun 001471849 008__ 230718s2023\\\\sz\a\\\\ob\\\\000\0\eng\d 001471849 019__ $$a1390726065 001471849 020__ $$a9783031314513$$q(electronic bk.) 001471849 020__ $$a3031314514$$q(electronic bk.) 001471849 020__ $$z9783031314506 001471849 020__ $$z3031314506 001471849 0247_ $$a10.1007/978-3-031-31451-3$$2doi 001471849 035__ $$aSP(OCoLC)1390716061 001471849 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dEBLCP$$dYDX$$dZMS$$dN$T$$dOCLCQ 001471849 049__ $$aISEA 001471849 050_4 $$aMT64.V37 001471849 08204 $$a781.8/25$$223/eng/20230816 001471849 1001_ $$aAlmada, Carlos,$$d1958-$$eauthor. 001471849 24510 $$aMusical variation :$$btoward a transformational perspective /$$cCarlos de Lemos Almada. 001471849 264_1 $$aCham :$$bSpringer,$$c2023. 001471849 300__ $$a1 online resource (xxxv, 307 pages) :$$billustrations. 001471849 336__ $$atext$$btxt$$2rdacontent 001471849 337__ $$acomputer$$bc$$2rdamedia 001471849 338__ $$aonline resource$$bcr$$2rdacarrier 001471849 4901_ $$aComputational music science,$$x1868-0313 001471849 504__ $$aIncludes bibliographical references (page 284). 001471849 5050_ $$aPart. I. Decontextualized variation. Basic concepts ; Decomposable variation ; Measurement of similarity ; Transformational operations ; Measurement of similarity -- Part II. Variation on time. Grundgestalt ; Developing variation -- Part III. Analysis: Brahms : Intermezzo in A major op.118/2 ; Formal, harmonic, and metric structure ; Derivative analysis -- Afterword -- Appendix A. Variation in non-tonal contexts -- Appendix B. MDA -- Appendix. C. Algorithms. 001471849 506__ $$aAccess limited to authorized users. 001471849 520__ $$aThis book offers an in-depth analysis of musical variation through a systematic approach, heavily influenced by the principles of Grundgestalt and developed variations, both created by the Austrian composer Arnold Schoenberg (1874-1951). The author introduces a new transformational-derivative model and the theory that supports it, specifically crafted for the examination of tonal music. The idea for this book emerged during a sabbatical at Columbia University, while the content is the product of extensive research conducted at the Federal University of Rio de Janeiro, resulting in the development of the Model of Derivative Analysis. This model places emphasis on the connections between musical entities rather than viewing them as separate entities. As a case study, the Intermezzo in A Major Op.118/2 by Brahms is selected for analysis. The author's goal is to provide a formal and structured approach while maintaining the text's readability and appeal for both musicians and mathematicians in the field of music theory. The book concludes with the author's recommendations for further research. 001471849 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed July 18, 2023). 001471849 650_0 $$aVariations$$xHistory and criticism. 001471849 650_0 $$aVariations$$xAnalysis, appreciation. 001471849 650_0 $$aVariations$$xMathematics. 001471849 655_0 $$aElectronic books. 001471849 77608 $$iPrint version:$$aAlmada, Carlos, 1958-$$tMusical variation.$$dCham : Springer, 2023$$z9783031314513$$w(OCoLC)1373927499 001471849 830_0 $$aComputational music science,$$x1868-0313 001471849 852__ $$bebk 001471849 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-031-31451-3$$zOnline Access$$91397441.1 001471849 909CO $$ooai:library.usi.edu:1471849$$pGLOBAL_SET 001471849 980__ $$aBIB 001471849 980__ $$aEBOOK 001471849 982__ $$aEbook 001471849 983__ $$aOnline 001471849 994__ $$a92$$bISE