001476066 000__ 06348cam\\22006617a\4500 001476066 001__ 1476066 001476066 003__ OCoLC 001476066 005__ 20231003174631.0 001476066 006__ m\\\\\o\\d\\\\\\\\ 001476066 007__ cr\un\nnnunnun 001476066 008__ 230819s2023\\\\si\\\\\\o\\\\\000\0\eng\d 001476066 019__ $$a1394113714 001476066 020__ $$a9789819939138$$q(electronic bk.) 001476066 020__ $$a9819939135$$q(electronic bk.) 001476066 020__ $$z9819939127 001476066 020__ $$z9789819939121 001476066 0247_ $$a10.1007/978-981-99-3913-8$$2doi 001476066 035__ $$aSP(OCoLC)1394121962 001476066 040__ $$aEBLCP$$beng$$cEBLCP$$dYDX$$dGW5XE$$dEBLCP$$dOCLCQ 001476066 049__ $$aISEA 001476066 050_4 $$aTA418.9.N35 001476066 08204 $$a620.1/15$$223/eng/20230825 001476066 24500 $$aUpconversion Nanoparticles (UCNPs) for functional applications /$$cVijay Kumar, Irfan Ayoub, Hendrik C. Swart, Rakesh Sehgal, editors. 001476066 260__ $$aSingapore :$$bSpringer,$$c2023. 001476066 300__ $$a1 online resource (495 p.). 001476066 4901_ $$aProgress in Optical Science and Photonics ;$$vv.24 001476066 500__ $$aDescription based upon print version of record. 001476066 500__ $$a4.3 Photodynamic Therapy 001476066 5050_ $$aIntro -- Preface -- Contents -- Mechanisms of Luminescence in Upconversion Nanoparticles -- 1 Introduction -- 2 Transition Metal Upconversion Mechanisms -- 3 Lanthanide Upconversion Mechanisms -- 4 Upconversion Mechanisms in Organic Nanoparticles -- 5 Upconversion of Semiconductor Quantum Dots (UCQD) -- 6 Conclusion -- References -- Engineering of Upconversion Nanoparticles for Better Efficiency -- 1 Introduction -- 1.1 Limitations in the Efficiency of UCNPs -- 2 Ways to Improve the Efficiency of UCNPs -- 2.1 Shell Addition -- 2.2 Concentration of Dopants -- 2.3 Crystal Matrix 001476066 5058_ $$a2.4 Thermal Enhancement -- 2.5 Dielectric Structures -- 2.6 Modification of UCNPs Properties by Other Photoactive Species -- 3 Strategies to Improve RET Efficiency -- 3.1 Improving the Donor Quantum Yield -- 3.2 Reducing the Acceptor-Donor Distance -- 3.3 Spectral Overlap -- 4 Concluding Remarks -- References -- Phenomenology of Emission Color Tunability in Upconversion Nanoparticles -- 1 Introduction -- 2 Upconversion Processes -- 3 Role of the Host-Generation of Colors Through UC -- 4 Change in Concentration and Co/Tri-doping Leading to UC Color Change 001476066 5058_ $$a4.1 Influence of Size/Shape of NPs on UC -- 4.2 UC Color Tunability by Power Density -- 4.3 Core-Shell Structure-Based UC Color Tunability -- 4.4 Pulse Modulation -- 4.5 Dual Wavelength Excitation -- 4.6 Local Structure Manipulation and Changing Surrounding Environments Like Temperature and Pressure -- 4.7 Other Factors -- 5 Conclusions -- References -- Design of Interfacial Energy Transfer Model in Upconversion Nanoparticles -- 1 Introduction -- 2 Energy Flux in Core-shell Nanoparticles -- 2.1 Construct Interface in Nanomaterials -- 2.2 IET-Mediated Upconversion 001476066 5058_ $$a2.3 Optimization of Energy Transfer Pathways -- 3 Mechanistic Understanding of Upconversion by IET -- 3.1 Control of Energy Transfer on the Nanoscale -- 3.2 Probe Energy Migration at Sublattice -- 3.3 Deep Insight Into Gd3+-Mediated Interfacial Interactions -- 4 Frontier Applications -- 4.1 Information Security and Anti-Counterfeiting -- 4.2 Upconversion Laser -- 4.3 Single-Particle Imaging and Sensing -- 4.4 Biotherapy -- 4.5 Lifetime Imaging -- 5 Conclusions -- References -- Upconversion Phenomenon and Its Implications in Core-Shell Architecture -- 1 Introduction 001476066 5058_ $$a2 Different Strategies for Tuning the Upconversion Phenomenon in Core-Shell Architecture -- 2.1 Homogeneous Active Core-Inert Shell UCNP -- 2.2 Heterogeneous Active Core-Inert Shell UCNP -- 2.3 Active Core-Active Shell Structure -- 2.4 Suppression of Cross-Relaxation -- 2.5 Nanoscopic Control of Energy Transfer -- 3 Multicolor Modulation of Emissions/Tuning of Upconversion Colors -- 3.1 Functional Multiplicity of Core-Shell Particles -- 3.2 Emission Lifetime Modulation -- 3.3 Organic Dyes as the Shell Layer -- 4 Biomedical Applications of Core@shell UCNPs -- 4.1 Bioimaging -- 4.2 Drug Delivery 001476066 506__ $$aAccess limited to authorized users. 001476066 520__ $$aThis book explores upconversion nanoparticles (UCNPs) at both, the fundamental as well as applied levels, for functional applications. It provides a broad perspective about the synthesis approaches of UCNPs with the preferred size, improved and tunable upconversion luminescence, along with the combined multifunctionality for various applications. It highlights the fundamentals and systematic developments in the tuning of UC emission and surface engineering of UCNPs that make UCNPs convenient for use in a large range of applications. Moreover, it gives an understanding of the imposed limitations and challenges associated with these methods to achieve the desired performance in targeted applications. It also includes the latest multifunctional lanthanide-based UCNPs, which efficiently convert low-energy photons into high-energy photons, and their applications in fluorescent microscopy, deep-tissue bioimaging, nanomedicine, optogenetics, solid-state lighting, solar cells, security labeling, and volumetric display. 001476066 650_0 $$aNanoparticles. 001476066 650_0 $$aNanostructured materials. 001476066 655_0 $$aElectronic books. 001476066 7001_ $$aKumar, Vijay. 001476066 7001_ $$aAyoub, Irfan. 001476066 7001_ $$aSwart, Hendrik C. 001476066 7001_ $$aSehgal, Rakesh. 001476066 77608 $$iPrint version:$$aKumar, Vijay$$tUpconversion Nanoparticles (UCNPs) for Functional Applications$$dSingapore : Springer Singapore Pte. Limited,c2023$$z9789819939121 001476066 830_0 $$aProgress in optical science and photonics ;$$vv. 24. 001476066 852__ $$bebk 001476066 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-981-99-3913-8$$zOnline Access$$91397441.1 001476066 909CO $$ooai:library.usi.edu:1476066$$pGLOBAL_SET 001476066 980__ $$aBIB 001476066 980__ $$aEBOOK 001476066 982__ $$aEbook 001476066 983__ $$aOnline 001476066 994__ $$a92$$bISE