001476187 000__ 03098cam\\22005777i\4500 001476187 001__ 1476187 001476187 003__ OCoLC 001476187 005__ 20231003174636.0 001476187 006__ m\\\\\o\\d\\\\\\\\ 001476187 007__ cr\un\nnnunnun 001476187 008__ 230824s2023\\\\sz\a\\\\ob\\\\000\0\eng\d 001476187 019__ $$a1394973869 001476187 020__ $$a9783031284281$$q(electronic bk.) 001476187 020__ $$a3031284283$$q(electronic bk.) 001476187 020__ $$z9783031284274 001476187 020__ $$z3031284275 001476187 0247_ $$a10.1007/978-3-031-28428-1$$2doi 001476187 035__ $$aSP(OCoLC)1395077376 001476187 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dYDX$$dEBLCP$$dOCLCQ 001476187 049__ $$aISEA 001476187 050_4 $$aQA166.8 001476187 08204 $$a516/.132$$223/eng/20230824 001476187 1001_ $$aD'Andrea, Francesco,$$eauthor. 001476187 24512 $$aA guide to Penrose tilings /$$cFrancesco D'Andrea. 001476187 264_1 $$aCham :$$bSpringer,$$c2023. 001476187 300__ $$a1 online resource (viii, 199 pages) :$$billustrations (some color) 001476187 336__ $$atext$$btxt$$2rdacontent 001476187 337__ $$acomputer$$bc$$2rdamedia 001476187 338__ $$aonline resource$$bcr$$2rdacarrier 001476187 504__ $$aIncludes bibliographical references. 001476187 5050_ $$aIntroduction -- Tilings and puzzles -- Robinson triangles -- Penrose tilings -- De Bruijn's pentagrids -- The noncommutative space of Penrose tilings.-Some useful formulas. 001476187 506__ $$aAccess limited to authorized users. 001476187 520__ $$aThis book provides an elementary introduction, complete with detailed proofs, to the celebrated tilings of the plane discovered by Sir Roger Penrose in the '70s. Quasi-periodic tilings of the plane, of which Penrose tilings are the most famous example, started as recreational mathematics and soon attracted the interest of scientists for their possible application in the description of quasi-crystals. The purpose of this survey, illustrated with more than 200 figures, is to introduce the curious reader to this beautiful topic and be a reference for some proofs that are not easy to find in the literature. The volume covers many aspects of Penrose tilings, including the study, from the point of view of Connes' Noncommutative Geometry, of the space parameterizing these tilings. 001476187 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed August 24, 2023). 001476187 650_0 $$aTiling (Mathematics) 001476187 655_0 $$aElectronic books. 001476187 77608 $$iPrint version: $$z3031284275$$z9783031284274$$w(OCoLC)1369999734 001476187 852__ $$bebk 001476187 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-031-28428-1$$zOnline Access$$91397441.1 001476187 909CO $$ooai:library.usi.edu:1476187$$pGLOBAL_SET 001476187 980__ $$aBIB 001476187 980__ $$aEBOOK 001476187 982__ $$aEbook 001476187 983__ $$aOnline 001476187 994__ $$a92$$bISE