001481540 000__ 11491nam\\2200589\i\4500 001481540 001__ 1481540 001481540 003__ DLC 001481540 005__ 20231102003252.0 001481540 006__ m\\\\\o\\d\\\\\\\\ 001481540 007__ cr\cn\nnnunnun 001481540 008__ 221102s2023\\\\njua\\\\ob\\\\001\0\eng\d 001481540 010__ $$a 2022052834 001481540 020__ $$a9781119847496 001481540 020__ $$a1119847494 001481540 020__ $$a9781119847489 001481540 020__ $$a1119847486 001481540 020__ $$a9781119847502 001481540 020__ $$a1119847508 001481540 020__ $$z9781119847472 001481540 040__ $$aNhCcYBP$$cNhCcYBP 001481540 042__ $$apcc 001481540 050_4 $$aTK5103.252$$b.J53 2023 001481540 08200 $$a621.3845/6$$223/eng/20230113 001481540 1001_ $$aJiang, Wei$$c(Writer on 6G networks),$$eauthor. 001481540 24510 $$a6G key technologies :$$ba comprehensive guide /$$cWei Jiang and Fa-Long Luo. 001481540 2463_ $$aSixG key technologies 001481540 264_1 $$aHoboken, New Jersey :$$bJohn Wiley & Sons, Inc. ;$$aPiscataway, NY :$$bIEEE Press,$$c[2023] 001481540 300__ $$a1 online resource ( xxix, 546 pages) :$$billustrations. 001481540 336__ $$atext$$btxt$$2rdacontent 001481540 337__ $$acomputer$$bc$$2rdamedia 001481540 338__ $$aonline resource$$bcr$$2rdacarrier 001481540 504__ $$aIncludes bibliographical references and index. 001481540 5050_ $$aCover -- Title Page -- Copyright -- Contents -- Preface -- List of Abbreviations -- Part I The Vision of 6G and Technical Evolution -- Chapter 1 Standards History of Cellular Systems Toward 6G -- 1.1 0G: Pre-Cellular Systems -- 1.2 1G: The Birth of Cellular Network -- 1.2.1 Nordic Mobile Telephone (NMT) -- 1.2.2 Advanced Mobile Phone System (AMPS) -- 1.3 2G: From Analog to Digital -- 1.3.1 Global System for Mobile Communications (GSM) -- 1.3.2 Digital Advanced Mobile Phone System (D-AMPS) -- 1.3.3 Interim Standard 95 (IS-95) -- 1.3.4 Personal Digital Cellular (PDC) -- 1.3.5 General Packet Radio Service (GPRS) -- 1.3.6 Enhanced Data Rates for GSM Evolution (EDGE) -- 1.4 3G: From Voice to Data-Centric -- 1.4.1 Wideband Code-Division Multiple Access (WCDMA) -- 1.4.2 Code-Division Multiple Access 2000 (CDMA2000) -- 1.4.3 Time Division-Synchronous Code-Division Multiple Access (TD-SCDMA) -- 1.4.4 Worldwide Interoperability for Microwave Access (WiMAX) -- 1.5 4G: Mobile Internet -- 1.5.1 Long-Term Evolution-Advanced (LTE-Advanced) -- 1.5.2 WirelessMAN-Advanced -- 1.6 5G: From Human to Machine -- 1.7 Beyond 5G -- 1.8 Conclusions -- References -- Chapter 2 Pre-6G Technology and System Evolution -- 2.1 1G -- AMPS -- 2.1.1 System Architecture -- 2.1.2 Key Technologies -- 2.1.2.1 Frequency Reuse -- 2.1.2.2 Cell Splitting -- 2.1.2.3 Sectorization -- 2.1.2.4 Handover -- 2.1.2.5 Frequency-Division Multiple Access -- 2.2 2G -- GSM -- 2.2.1 System Architecture -- 2.2.1.1 Mobile Station Subsystem -- 2.2.1.2 Bases Station Subsystem -- 2.2.1.3 Network and Switching Subsystem -- 2.2.1.4 Operation and Support Subsystem -- 2.2.1.5 General Packet Radio Service -- 2.2.1.6 Gateway GPRS Support Node -- 2.2.2 Key Technologies -- 2.2.2.1 Time-Division Multiple Access -- 2.2.2.2 Frequency Hopping -- 2.2.2.3 Speech Compression -- 2.2.2.4 Channel Coding. 001481540 5050_ $$a2.2.2.5 Digital Modulation -- 2.2.2.6 Discontinuous Transmission (DXT) -- 2.3 3G -- WCDMA -- 2.3.1 System Architecture -- 2.3.1.1 User Equipment -- 2.3.1.2 UMTS Terrestrial Radio Access Network -- 2.3.1.3 Core Network -- 2.3.2 Key Technologies -- 2.3.2.1 Code-Division Multiple Access -- 2.3.2.2 Rake Receiver -- 2.3.2.3 Turbo Codes -- 2.4 4G -- LTE -- 2.4.1 System Architecture -- 2.4.1.1 Evolved Universal Terrestrial Radio Access Network -- 2.4.1.2 Evolved Packet Core -- 2.4.2 Key Technologies -- 2.4.2.1 Orthogonal Frequency-Division Multiplexing -- 2.4.2.2 Carrier Aggregation -- 2.4.2.3 Relaying -- 2.4.2.4 Heterogeneous Network -- 2.4.2.5 Coordinated Multi-Point Transmission and Reception -- 2.4.2.6 Device-to-Device Communications -- 2.4.2.7 License-Assisted Access -- 2.5 5G -- New Radio -- 2.5.1 System Architecture -- 2.5.1.1 5G Core Network -- 2.5.1.2 Next Generation Radio Access Network -- 2.5.2 Key Technologies -- 2.5.2.1 Massive MIMO -- 2.5.2.2 Millimeter Wave -- 2.5.2.3 Non-Orthogonal Multiple Access -- 2.5.2.4 SDN/NFV -- 2.5.2.5 Network Slicing -- 2.5.2.6 Polar Codes -- 2.6 Conclusions -- References -- Chapter 3 The Vision of 6G: Drivers, Enablers, Uses, and Roadmap -- 3.1 Background -- 3.2 Explosive Mobile Traffic -- 3.3 Use Cases -- 3.4 Usage Scenarios -- 3.5 Performance Requirements -- 3.6 Research Initiatives and Roadmap -- 3.6.1 ITU -- 3.6.2 Third Generation Partnership Project -- 3.6.3 Industry -- 3.6.4 Europe -- 3.6.5 The United States -- 3.6.6 China -- 3.6.7 Japan -- 3.6.8 South Korea -- 3.7 Key Technologies -- 3.7.1 Millimeter Wave -- 3.7.2 Terahertz Communications -- 3.7.3 Optical Wireless Communications -- 3.7.4 Massive MIMO -- 3.7.5 Intelligent Reflecting Surfaces -- 3.7.6 Next-Generation Multiple Access -- 3.7.7 Open Radio Access Network -- 3.7.8 Non-Terrestrial Networks -- 3.7.9 Artificial Intelligence. 001481540 5050_ $$a3.7.10 Communication-Computing-Sensing Convergence -- 3.8 Conclusions -- References -- Part II Full-Spectra Wireless Communications in 6G -- Chapter 4 Enhanced Millimeter-Wave Wireless Communications in 6G -- 4.1 Spectrum Shortage -- 4.2 mmWave Propagation Characteristics -- 4.2.1 Large-Scale Propagation Effects -- 4.2.1.1 Free-Space Propagation Loss -- 4.2.1.2 NLOS Propagation and Shadowing -- 4.2.1.3 Atmospheric Attenuation -- 4.2.2 Small-Scale Propagation Effects -- 4.2.3 Delay Spread and Coherence Bandwidth -- 4.2.4 Doppler Spread and Coherence Time -- 4.2.5 Angular Spread -- 4.3 Millimeter-Wave Channel Models -- 4.3.1 Large-Scale Fading -- 4.3.2 3GPP Channel Models -- 4.3.2.1 Urban Micro Scenario -- 4.3.2.2 Urban Macro Scenario -- 4.3.2.3 Indoor Scenario -- 4.3.3 Small-Scale Fading -- 4.4 mmWave Transmission Technologies -- 4.4.1 Beamforming -- 4.4.1.1 Digital Beamforming -- 4.4.1.2 Analog Beamforming -- 4.4.1.3 Hybrid Beamforming -- 4.4.1.4 3D Beamforming -- 4.4.2 Initial Access -- 4.4.2.1 Multi-Beam Synchronization and Broadcasting -- 4.4.2.2 Conventional Initial Access in LTE -- 4.4.2.3 Beam-Sweeping Initial Access in NR -- 4.4.3 Omnidirectional Beamforming -- 4.4.3.1 Random Beamforming -- 4.4.3.2 Enhanced Random Beamforming -- 4.4.3.3 Complementary Random Beamforming -- 4.5 Summary -- References -- Chapter 5 Terahertz Technologies and Systems for 6G -- 5.1 Potential of Terahertz Band -- 5.1.1 Spectrum Limit -- 5.1.2 The Need of Exploiting Terahertz Band -- 5.1.3 Spectrum Regulation on Terahertz Band -- 5.2 Terahertz Applications -- 5.2.1 Terahertz Wireless Communications -- 5.2.1.1 Terabit Cellular Hotspot -- 5.2.1.2 Terabit Wireless Local-Area Network -- 5.2.1.3 Terabit Device-To-Device Link -- 5.2.1.4 Secure Wireless Communication -- 5.2.1.5 Terabit Wireless Backhaul -- 5.2.1.6 Terahertz Nano-Communications. 001481540 5050_ $$a5.2.2 Non-Communication Terahertz Applications -- 5.2.2.1 Terahertz Sensing -- 5.2.2.2 Terahertz Imaging -- 5.2.2.3 Terahertz Positioning -- 5.3 Challenges of Terahertz Communications -- 5.3.1 High Free-Space Path Loss -- 5.3.2 Atmospheric Attenuation -- 5.3.3 Weather Effects -- 5.3.4 Blockage -- 5.3.5 High Channel Fluctuation -- 5.4 Array-of-Subarrays Beamforming -- 5.5 Lens Antenna -- 5.5.1 Refraction of Radio Waves -- 5.5.2 Lens Antenna Array -- 5.6 Case Study -- IEEE 802.15.3d -- 5.6.1 IEEE 802.15.3d Usage Scenarios -- 5.6.2 Physical Layer -- 5.6.2.1 Channelization -- 5.6.2.2 Modulation -- 5.6.2.3 Forward Error Correction -- 5.6.3 Medium Access Control -- 5.6.4 Frame Structure -- 5.6.4.1 Preamble -- 5.6.4.2 PHY Header -- 5.6.4.3 MAC Header -- 5.6.4.4 Construction Process of Frame Header -- 5.7 Summary -- References -- Chapter 6 Optical and Visible Light Wireless Communications in 6G -- 6.1 The Optical Spectrum -- 6.1.1 Infrared -- 6.1.2 Visible Light -- 6.1.3 Ultraviolet -- 6.2 Advantages and Challenges -- 6.3 OWC Applications -- 6.4 Evolution of Optical Wireless Communications -- 6.4.1 Wireless Infrared Communications -- 6.4.2 Visible Light Communications -- 6.4.3 Wireless Ultraviolet Communications -- 6.4.4 Free-Space Optical Communications -- 6.5 Optical Transceiver -- 6.6 Optical Sources and Detectors -- 6.6.1 Light-Emitting Diode -- 6.6.2 Laser Diode -- 6.6.3 Photodiode -- 6.7 Optical Link Configuration -- 6.8 Optical MIMO -- 6.8.1 Spatial Multiplexing -- 6.8.2 Spatial Modulation -- 6.9 Summary -- References -- Part III Smart Radio Networks and Air Interface Technologies for 6G -- Chapter 7 Intelligent Reflecting Surface-Aided Communications for 6G -- 7.1 Basic Concept -- 7.2 IRS-Aided Single-Antenna Transmission -- 7.2.1 Signal Model -- 7.2.2 Passive Beamforming -- 7.2.3 Product-Distance Path Loss -- 7.3 IRS-Aided Multi-Antenna Transmission. 001481540 5050_ $$a7.3.1 Joint Active and Passive Beamforming -- 7.3.1.1 SDR Solution -- 7.3.1.2 Alternating Optimization -- 7.3.2 Joint Precoding and Reflecting -- 7.4 Dual-Beam Intelligent Reflecting Surface -- 7.4.1 Dual Beams Over Hybrid Beamforming -- 7.4.2 Dual-Beam IRS -- 7.4.3 Optimization Design -- 7.5 IRS-Aided Wideband Communications -- 7.5.1 Cascaded Frequency-Selective Channel -- 7.5.2 IRS-Aided OFDM System -- 7.5.3 Rate Maximization -- 7.6 Multi-User IRS Communications -- 7.6.1 Multiple Access Model -- 7.6.2 Orthogonal Multiple Access -- 7.6.2.1 Time-Division Multiple Access -- 7.6.2.2 Frequency-Division Multiple Access -- 7.6.3 Non-Orthogonal Multiple Access -- 7.7 Channel Aging and Prediction -- 7.7.1 Outdated Channel State Information -- 7.7.1.1 Doppler Shift -- 7.7.1.2 Phase Noise -- 7.7.2 Impact of Channel Aging on IRS -- 7.7.3 Classical Channel Prediction -- 7.7.3.1 Autoregressive Model -- 7.7.3.2 Parametric Model -- 7.7.4 Recurrent Neural Network -- 7.7.5 RNN-Based Channel Prediction -- 7.7.5.1 Flat-Fading Channel Prediction -- 7.7.5.2 Frequency-Selective Fading Channel Prediction -- 7.7.6 Long-Short Term Memory -- 7.7.7 Deep Learning-Based Channel Prediction -- 7.8 Summary -- References -- Chapter 8 Multiple Dimensional and Antenna Techniques for 6G -- 8.1 Spatial Diversity -- 8.2 Receive Combining -- 8.2.1 Selection Combining -- 8.2.2 Maximal Ratio Combining -- 8.2.3 Equal-Gain Combining -- 8.3 Space-Time Coding -- 8.3.1 Repetition Coding -- 8.3.2 Space-Time Trellis Codes -- 8.3.3 Alamouti Coding -- 8.3.4 Space-Time Block Codes -- 8.4 Transmit Antenna Selection -- 8.5 Beamforming -- 8.5.1 Classical Beamforming -- 8.5.2 Single-Stream Precoding -- 8.6 Spatial Multiplexing -- 8.6.1 Single-User MIMO -- 8.6.2 MIMO Precoding -- 8.6.2.1 Full CSI at the Transmitter -- 8.6.2.2 Limited CSI at the Transmitter -- 8.6.3 MIMO Detection. 001481540 506__ $$aAccess limited to authorized users 001481540 533__ $$aElectronic reproduction.$$bAnn Arbor, MI$$nAvailable via World Wide Web. 001481540 588__ $$aDescription based on online resource; title from digital title page (viewed on June 30, 2023). 001481540 650_0 $$a6G mobile communication systems. 001481540 655_0 $$aElectronic books 001481540 7001_ $$aLuo, Fa-Long,$$eauthor. 001481540 7102_ $$aProQuest (Firm) 001481540 77608 $$iPrint version:$$aJiang, Wei$$t6G key technologies$$bFirst edition.$$dHoboken, New Jersey : Wiley, [2023]$$z9781119847472$$w(DLC) 2022052833 001481540 852__ $$bebk 001481540 85640 $$3GOBI DDA$$uhttps://univsouthin.idm.oclc.org/login?url=https://ebookcentral.proquest.com/lib/usiricelib-ebooks/detail.action?docID=7133422$$zOnline Access 001481540 909CO $$ooai:library.usi.edu:1481540$$pGLOBAL_SET 001481540 980__ $$aBIB 001481540 980__ $$aEBOOK 001481540 982__ $$aEbook 001481540 983__ $$aOnline