Linked e-resources
Details
Table of Contents
Cover
Half Title
Title Page
Copyright Page
Table of Contents
Authors
1 Introduction
1.1 Introduction
1.1.1 Perovskite Materials
1.1.2 Energy Exclamations Today
1.1.3 Titanate Materials in Energy Production
1.1.4 Crystal Structure of Titania and Titanate in Energy Materials
1.1.5 Importance of Energy Sources and Energy Materials
1.1.6 Role of Energy Materials in Energy System
1.2 Energy-Harvesting Materials
1.2.1 TE Materials
1.2.1.1 Organic-Inorganic Hybrid TEs
1.2.1.2 TE Inorganic Film: Stretchy TE Device and Micro TE Generator
1.2.2 TE Properties of Lanthanide-Doped Titanates
1.3 Power-Saving Materials
1.4 Perovskite Photonics
2 Energy Materials
2.1 Role of Activators
2.2 Unique Properties of Lanthanides
2.3 Preparation Methods and Surface Properties of RE-TiO[sub(2)]
2.3.1 Erbium-TiO[sub(2)]
2.3.1.1 Morphological Study of TiO[sub(2)]:Er[sup(3+)]
2.3.1.2 Crystal Structure of Er-TiO[sub(2)]
2.3.1.3 BET Surface Area and Optical Properties of Er-TiO[sub(2)]
2.3.1.4 Upconversion Properties of Er-TiO[sub(2)]
2.3.1.5 Photocatalytic Properties of Er-TiO[sub(2)]
2.3.2 Holmium-TiO[sub(2)]
2.3.3 Thulium-TiO[sub(2)]
2.3.4 Neodymium-TiO[sub(2)]
2.4 The Origin of RE-TiO[sub(2)] Visible Light Photoactivity
2.4.1 Basic Principles of the Theoretical Study of Lanthanides-TiO[sub(2)] Photocatalysts
2.4.2 Computational Characterization of the Investigated RE-TiO[sub(2)] Structures
2.4.3 Anti-Stokes Upconversion Process in the RE-TiO[sub(2)] Mechanism
2.5 Conclusion and Perspectives
3 Synthesis of Titanate Materials
3.1 Hydrothermal Method
3.2 Coprecipitation
3.3 Sol-gel
3.4 Sonochemical
3.5 Solution Combustion
3.5.1 Role of Fuels
3.5.2 Water Content
3.5.3 Importance of Gaseous Products
3.5.4 Flame Temperature
3.5.5 Fuel-to-Oxidizer Ratio
3.6 Solid-State Reaction
3.7 Pulsed Laser Deposition
3.8 Sputtering Method
4 Titanate Materials
4.1 BaTiO[sub(3)] Multipods
4.2 PVDF-HFP-GMA/BaTiO[sub(3)] Nanocomposites
4.3 BaTiO[sub(3)]/Polyvinylidene Fluoride (BT/PVDF) Nanocomposites
4.4 BaTi[sub(1-x)]M[sub(x)]O[sub(3)] (M=Cr, Mn, Fe, and Co) Nanocrystals
4.5 BaTiO[sub(3)] /Polydimethylsiloxane (PDMS) Nanogenerators
4.6 CaTiO[sub(3)]:Eu[sup(3+)] Phosphors
4.7 Zn[sup(2+)] Ions in BaTiO[sub(3)]: Er[sup(3)]/Yb[sup(3)]+ Nanophosphor
4.8 MgTiO[sub(3)]:Mn[sup(4+)]
4.9 CaTiO[sub(3)]:Pr[sup(3+@)]SiO[sub(2)]
5 Applications of Titanate Materials
5.1 BaTiO[sub(3)]: RE Yellow Phosphors an TL Applications
5.1.1 X-Ray Diffraction (XRD) of BaTiO[sub(3)]: Dy[sub(3+)] Phosphor
5.1.2 TL Glow Curve Studies
5.2 Photoluminescence Applications with Specific Titanate Materials
5.2.1 (Ba,Sr)TiO[sub(3)]:RE Perovskite Phosphors (RE=Dy, Eu): Lighting, Display, and Related Fields
Half Title
Title Page
Copyright Page
Table of Contents
Authors
1 Introduction
1.1 Introduction
1.1.1 Perovskite Materials
1.1.2 Energy Exclamations Today
1.1.3 Titanate Materials in Energy Production
1.1.4 Crystal Structure of Titania and Titanate in Energy Materials
1.1.5 Importance of Energy Sources and Energy Materials
1.1.6 Role of Energy Materials in Energy System
1.2 Energy-Harvesting Materials
1.2.1 TE Materials
1.2.1.1 Organic-Inorganic Hybrid TEs
1.2.1.2 TE Inorganic Film: Stretchy TE Device and Micro TE Generator
1.2.2 TE Properties of Lanthanide-Doped Titanates
1.3 Power-Saving Materials
1.4 Perovskite Photonics
2 Energy Materials
2.1 Role of Activators
2.2 Unique Properties of Lanthanides
2.3 Preparation Methods and Surface Properties of RE-TiO[sub(2)]
2.3.1 Erbium-TiO[sub(2)]
2.3.1.1 Morphological Study of TiO[sub(2)]:Er[sup(3+)]
2.3.1.2 Crystal Structure of Er-TiO[sub(2)]
2.3.1.3 BET Surface Area and Optical Properties of Er-TiO[sub(2)]
2.3.1.4 Upconversion Properties of Er-TiO[sub(2)]
2.3.1.5 Photocatalytic Properties of Er-TiO[sub(2)]
2.3.2 Holmium-TiO[sub(2)]
2.3.3 Thulium-TiO[sub(2)]
2.3.4 Neodymium-TiO[sub(2)]
2.4 The Origin of RE-TiO[sub(2)] Visible Light Photoactivity
2.4.1 Basic Principles of the Theoretical Study of Lanthanides-TiO[sub(2)] Photocatalysts
2.4.2 Computational Characterization of the Investigated RE-TiO[sub(2)] Structures
2.4.3 Anti-Stokes Upconversion Process in the RE-TiO[sub(2)] Mechanism
2.5 Conclusion and Perspectives
3 Synthesis of Titanate Materials
3.1 Hydrothermal Method
3.2 Coprecipitation
3.3 Sol-gel
3.4 Sonochemical
3.5 Solution Combustion
3.5.1 Role of Fuels
3.5.2 Water Content
3.5.3 Importance of Gaseous Products
3.5.4 Flame Temperature
3.5.5 Fuel-to-Oxidizer Ratio
3.6 Solid-State Reaction
3.7 Pulsed Laser Deposition
3.8 Sputtering Method
4 Titanate Materials
4.1 BaTiO[sub(3)] Multipods
4.2 PVDF-HFP-GMA/BaTiO[sub(3)] Nanocomposites
4.3 BaTiO[sub(3)]/Polyvinylidene Fluoride (BT/PVDF) Nanocomposites
4.4 BaTi[sub(1-x)]M[sub(x)]O[sub(3)] (M=Cr, Mn, Fe, and Co) Nanocrystals
4.5 BaTiO[sub(3)] /Polydimethylsiloxane (PDMS) Nanogenerators
4.6 CaTiO[sub(3)]:Eu[sup(3+)] Phosphors
4.7 Zn[sup(2+)] Ions in BaTiO[sub(3)]: Er[sup(3)]/Yb[sup(3)]+ Nanophosphor
4.8 MgTiO[sub(3)]:Mn[sup(4+)]
4.9 CaTiO[sub(3)]:Pr[sup(3+@)]SiO[sub(2)]
5 Applications of Titanate Materials
5.1 BaTiO[sub(3)]: RE Yellow Phosphors an TL Applications
5.1.1 X-Ray Diffraction (XRD) of BaTiO[sub(3)]: Dy[sub(3+)] Phosphor
5.1.2 TL Glow Curve Studies
5.2 Photoluminescence Applications with Specific Titanate Materials
5.2.1 (Ba,Sr)TiO[sub(3)]:RE Perovskite Phosphors (RE=Dy, Eu): Lighting, Display, and Related Fields