001482532 000__ 05198cam\\22005657a\4500 001482532 001__ 1482532 001482532 003__ OCoLC 001482532 005__ 20231128003340.0 001482532 006__ m\\\\\o\\d\\\\\\\\ 001482532 007__ cr\un\nnnunnun 001482532 008__ 231022s2023\\\\sz\a\\\\o\\\\\000\0\eng\d 001482532 020__ $$a9783031383878$$q(electronic bk.) 001482532 020__ $$a3031383877$$q(electronic bk.) 001482532 020__ $$z3031383869 001482532 020__ $$z9783031383861 001482532 0247_ $$a10.1007/978-3-031-38387-8$$2doi 001482532 035__ $$aSP(OCoLC)1405365289 001482532 040__ $$aYDX$$beng$$cYDX$$dGW5XE$$dEBLCP$$dYDX$$dOCLCO$$dOCLCF 001482532 049__ $$aISEA 001482532 050_4 $$aTJ808$$b.D43 2023 001482532 08204 $$a333.79/4$$223/eng/20231025 001482532 24500 $$aDecision making using AI in energy and sustainability$$h[electronic resource] :$$bmethods and models for policy and practice /$$cGülgün Kayakutlu, M. Özgür Kayalica, editors. 001482532 260__ $$aCham, Switzerland :$$bSpringer,$$c[2023] 001482532 300__ $$a1 online resource (xi, 312 pages) :$$billustrations 001482532 4901_ $$aApplied innovation and technology management 001482532 5050_ $$a1. Climate change Can AI help understanding and more effective facing of various interrelated impacts?- 2. A methodology for linking the Energy-related Policies of the European Green Deal to the 17 SDGs using Machine Learning -- 3. Single-valued neutrosophic CRITIC-based ARAS method for the assessment of sustainable circular supplier selection -- 4. Linguistic-Based MCDM Approach for Climate Change Risk Evaluation Methodology -- 5. Creating a Net-Zero Carbon Emission Scenario Using OSeMOSYS for the Power Sector of Turkey -- 6. Prediction of Downward Surface Solar Radiation Using Particle Swarm Optimization and Neural Networks -- 7. Electricity Demand Prediction: Case of Turkey -- 8. The Impact Of The Wind Energy Power Forecast Accuracy On The Price Of Electricity -- 9. The Power of Combination Models in Energy Demand Forecasting -- 10. Data-driven state classification for energy modeling of machine tools using power signals and part-program information -- 11. Energy Efficiency Optimization Application in Food Production using IIOT based Machine Learning -- 12. Hype: a data-driven tool for smart city profile (SCP) discrimination -- 13. An Integrated Hesitant Fuzzy Linguistic MCDM Methods to Assess Smart City Solutions -- 14. Presence of Renewable Resources in a Smart City for Supplying Clean and Sustainable Energy -- 15. Syrian Household Energy Consumption Behavior Analysis In Turkey: Bayesian Belief Network -- 16. Informativeness in Twitter Textual Contents for Farmer-centric Pest Monitoring -- 17. A Multi-Criteria Decision-Making Model for Technology Selection in Renewable-Based Residential Microgrids -- 18. Energy Management in Power-Split Hybrid Electric Vehicles Using Fuzzy Logic Controller. 001482532 506__ $$aAccess limited to authorized users. 001482532 520__ $$aArtificial intelligence (AI) has a huge impact on science and technology, including energy, where access to resources has been a source of geopolitical conflicts. AI can predict the demand and supply of renewable energy, optimize efficiency in energy systems, and improve the management of natural energy resources, among other things. This book explores the use of AI tools for improving the management of energy systems and providing sustainability with smart cities, smart facilities, smart buildings, smart transportation, and smart houses. Featuring research from International Federation for Information Processing's (IFIP) AI in Energy and Sustainability working group, this book provides new models and algorithms for AI applications in energy and sustainability fields. Any short-term, mid-term and long-term forecasting, optimization models, trend foresights and prescriptions based on scenarios are studied in the energy world and the smart systems for sustainability. The contents of this book are valuable for energy researchers, academics, scholars, practitioners and policy makers. 001482532 588__ $$aOnline resource; title from PDF title page (SpringerLink, viewed October 25, 2023). 001482532 650_6 $$aÉnergies renouvelables$$xInformatique. 001482532 650_6 $$aRessources énergétiques$$xGestion$$xInformatique. 001482532 650_6 $$aIntelligence artificielle$$xApplications industrielles. 001482532 650_6 $$aIntelligence artificielle$$xAspect de l'environnement. 001482532 650_0 $$aRenewable energy sources$$xData processing.$$vCongresses$$0(DLC)sh2008110698 001482532 650_0 $$aPower resources$$xManagement$$xData processing.$$0(DLC)sh 85043124 001482532 650_0 $$aArtificial intelligence$$xIndustrial applications.$$xMedical applications$$0(DLC)sh 88003000 001482532 650_0 $$aArtificial intelligence$$xEnvironmental aspects.$$xMedical applications$$0(DLC)sh 88003000 001482532 655_0 $$aElectronic books. 001482532 7001_ $$aKayakutlu, Gülgün,$$eeditor. 001482532 7001_ $$aKayalica, M. Özgür,$$eeditor. 001482532 77608 $$iPrint version:$$z3031383869$$z9783031383861$$w(OCoLC)1387009390 001482532 830_0 $$aApplied innovation and technology management. 001482532 852__ $$bebk 001482532 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-031-38387-8$$zOnline Access$$91397441.1 001482532 909CO $$ooai:library.usi.edu:1482532$$pGLOBAL_SET 001482532 980__ $$aBIB 001482532 980__ $$aEBOOK 001482532 982__ $$aEbook 001482532 983__ $$aOnline 001482532 994__ $$a92$$bISE