University of Southern Indiana Pott College of Science, Engineering, and Education Engineering Department

> 8600 University Boulevard Evansville, Indiana 47712

Low-Cost Water Filtration System

Jabin Adams and Zane Kisner MFET491 - Senior Project Fall 2023

ACKNOWLEDGEMENTS

Dr. Susan Ely

Dr. Paul Kuban

Dr. Adam Tennant

- Dr. Thomas McDonald
- Mr. David Ellert
- Mr. Justin Amos

Dr. Paul Doss

Altstadt Hoffman Plumbing Services

TABLE OF CONTENTS

ackı	cknowledgements				
List	List of Figures				
List	of T	ables			
Intr	oduc	tion5			
1	B	ackground5			
	1.1	Problem Statement			
	1.2	Review of Existing Solutions			
2	С	ontextualized Diagram			
3	D	esign Criteria9			
	3.1	EPA Recommended Values			
	3.2	Design Criteria Main Points12			
4	С	onceptual Design			
	4.1	CAD Assembled System Design			
	4.2	CAD Constructed Filter body			
	4.3	Diffusion Plate and Screen Holder14			
	4.4	A.O. Smith Large Sediment Filter			
	4.5	Ball Valves and Pressure Gauges			
5	Sy	stem Hierarchy17			
	5.1	Housing Subassembly			
5.	1.2	Hardware			
5.	1.3	Specifications			
	5.2	Filter Subassembly			
6	Fu	Illy Assembled System			
7	Sy	vstem Tests			
	7.1	System Test One and Results			
	7.2	System Test Two and Results			
	7.3	System Test Three and Results			
	7.4	System Test 3 Water Appearances			
8	B	1dget			
9	C	apitalized Worth of Equivalence			
1() E	valuation Criteria			

11 Proj	ject Challenges	30
11.1	Wrong Components	30
11.2	Faulty Components	30
11.3	Shipments	30
Bibliograp	hy	. 31
Appendix 1	1: Schedule	. 32
Appendix	2: FMEA	. 33
Appendix	3: Pipe Specification	. 34
Appendix 4	4: National Primary Drinking Water Regulations	. 35
Appendix	5: Water Testing Strips	. 42
Appendix (6: Photos	. 43

LIST OF FIGURES

Figure 1: Britta Pitcher Filter
Figure 2: Britta Faucet Filter
Figure 3: A.O. Smith Water Filtration System
Figure 4: Premier Sales Water Filtration System
Figure 5: Contextualized Diagram
Figure 6: Fully Assembled System Design
Figure 7: Constructed Filter Body 14
Figure 8: Puck Filter Screen Holder 14
Figure 9: Water Diffusion Plate
Figure 10: A.O. Smith Large Sediment Filter
Figure 11: 1-inch PVC Ball Valve16
Figure 12: Pressure Gauge
Figure 13: System Hierarchy 17
Figure 14: Constructed Filter
Figure 15: Dirt Slurry
Figure 16: Filter Time Milestones
Figure 17: Project Schedule
Figure 18: FMEA
Figure 19: Spears Dimensions and Pressure Ratings (Spears manufacturing)
Figure 20: EPA Water Regulations 1 (Enviornmental Protection Agency)
Figure 21: EPA Water Regulations 2 (Enviornmental Protection Agency)
Figure 22: EPA Water Regulations 3 (Enviornmental Protection Agency)
Figure 23: EPA Water Regulations 4 (Enviornmental Protection Agency)

Figure 24: EPA Water Regulations 5 (Enviornmental Protection Agency)	39
Figure 25: EPA Water Regulations 6 (Enviornmental Protection Agency)	40
Figure 26: EPA Water Regulations 7 (Enviornmental Protection Agency)	41
Figure 27: Tespert Well Water Test Strips	42
Figure 28: Photo Documentation 1	
Figure 29: Photo Documentation 2	
Figure 30: Photo Documentation 3	
Figure 31: Photo Documentation 4	44
Figure 32: Photo Documentation 5	45

LIST OF TABLES

Table 1: EPA Recommended Maximum Allowable Contaminants	11
Table 2: Testing Results	21
Table 3: Prototype Costs	25
Table 4: Expected Actual Costs for Live Install	26
Table 5: Capitalized Worth of Equivalence	29

INTRODUCTION

Water is essential to all life on Earth. Humans use water every day for drinking, bathing, cleaning, and in many other different ways. However, only 2.5% of the total water on Earth is considered fresh potable water, but only 0.775% of this water is accessible to humans (Misachi). Contaminated water sources are responsible for nearly 1 million deaths per year (Water.org). These contaminants can be anything from bacteria to heavy metals or even radioactive materials. This report will explain how the team plans to help mitigate the issues presented with access to clean water. This product will be able to supply potable water to rural areas that are not connected to municipality utilities, and this product also has the capacity to be used globally in the future.

1 BACKGROUND

This product is a whole-home water filtration system. It will be installed between the well and the water heater, or a softener if one exists. This will benefit houses in rural areas that do not have reliable access to municipality utilities. The target population are the elderly who tend to live in these homes. This demographic is more susceptible to diseases, and usually will have a fixed income with little to no room for extraneous expenses. This filter will be competing with products from companies such as Britta, A.O. Smith, and Premier Sales.

1.1 PROBLEM STATEMENT

In some places of the world, there is no access to clean water. The goal of this product will be to provide a product that will allow homeowners to have reliably clean water at a low cost. The target demographic this product will serve are rural homes, not on municipality utilities. Access to clean water is a global issue that is prevalent for many people. However, this issue can never be fully solved, only mitigated. It is important to reduce the exposure to dirty water as much as possible because it can have severe health consequences, sometimes resulting in death.

1.2 REVIEW OF EXISTING SOLUTIONS

There are three types of readily available solutions to this issue related to the constructed filter. The first type of solution are Britta products, which are commonly water pitchers, Figure 1, or faucet attachment, Figure 2, which both have removable filters. These water pitchers and attachments are inexpensive, easy to use, and small. The downside of these systems is that they do not filter all the water coming into the home from the water supply.

Figure 1: Britta Pitcher Filter

Figure 2: Britta Faucet Filter

The second type of filtration solution is an A.O. Smith whole home filtration system. This is an inline water filtration system that is easy to use and filters all household water. The downside is that this filter is relatively expensive at \$400.00. This cost does not include any replacement filters or installation. This filter also only has a life span of 5 years.

Figure 3: A.O. Smith Water Filtration System

The third type of existing solution is the Premiere Sales Ultra Filtration Series, Figure 4. This is an Inline water filtration system that is easy to use, filters all household water, and is also small. The downside to it is that it is expensive, the retail price is \$1,890.00. This does not include any replacement filters or installation costs. These filters also have a life span of only 5 years.

Figure 4: Premier Sales Water Filtration System

2 CONTEXTUALIZED DIAGRAM

The contextualized diagram shows the filters location within the system. The water comes from the well/cistern and goes through the pump then enters the filter. The system was placed in this location to achieve the desired whole home filtration. After the filter comes the water softener, if there is one installed, then the hot water heater where it finally branches off to the respective hot and cold lines. The Contextualized Diagram is shown in Figure 5.

3 DESIGN CRITERIA

With the aquifer quality rapidly degrading, access to clean water is essential. Many homes that are utilizing well water are inhabited by more elderly people. This age demographic is more susceptible to health issues so clean drinking water is necessary for them. This filter will provide clean water for an entire home. This filter will produce safe and clean drinking water by using activated charcoal as a filtration media. Because activated charcoal has a high surface area, impurities can bond to the surface removing them from the water.

Activated charcoal is also non-toxic and is widely used in hospitals in a process called charcoal apheresis. However, the purposeful ingestion of large quantities of activated charcoal is unhealthy and can cause GI complications, so design safeguards must be in place. This product is intended for use in homes that are not on municipality (city/county) utilities. However, this intention does not limit its use to only the intended group. People who live in homes on well or cistern water tend to have a fixed income with little flexibility. The filter addresses this issue by

being easily and cheaply maintained for the duration of its life. The product has the potential to be used globally, not just in its intended demographic. Due to the low complexity of the design and readily available materials, it could be produced and adapted to meet nearly all situations with relative ease.

Cost is one of the most impactful components in this design. The team must consider the fact that the target demographic tends to be on an inflexible budget. Which means the product must be cheap to produce and maintain.

Performance is the other most important component to this design. The product must be able to perform adequately to produce clean and safe water for the duration of its life.

3.1 EPA RECOMMENDED VALUES

While there is no governing body that regulates the quality of water produced by private wells in the United States, the EPA does have a published document containing their recommended contaminant levels for drinking water. The table has been condensed to the contaminants the test strips chosen were able to monitor (Table 1). The table was further edited to highlight the values that saw a change in during the testing phase, all others remained zero throughout the testing. These values are in Table 1 below. The constructed filter must either reduce the contaminant level to meet or exceed the EPA's recommended values. The method of testing we chose was Tespert brand well water testing strips (Figure 24). We chose these because this type of method would be more accurate to what a homeowner would do themselves. While we could have also sent the samples to the water testing lab on town for a more accurate testing, there were several factors that kept us from doing this; having the state test the water samples was very costly at \$40.00 or more, the lab that we have access to only tests a few different containment levels, and the test results could have taken months to get back.

10

Contaminant	Maximum allowable (ppm)
Nitrate	10
Nitrite	1
Total Hardness	N.A.
Free Chlorine	4
Total Chlorine	4
Bromine	1
Micro-Plastics (MPS)	0
Copper	1.3
Iron	0.3
Lead	0
Nickle	0.1
Sulfite	250
Cyanuric Acid	200

 Table 1: EPA Recommended Maximum Allowable Contaminants

Carbonate	180 (suggested)
Total Alkalinity	30-400 (suggested)
рН	6.5-8.5 (suggested)

3.2 DESIGN CRITERIA MAIN POINTS

With these factors in mind, the project's evaluation was set to these three points:

- 1) Must cost under \$350.00.
- 2) Must remove all tested contaminants.
- 3) Make safe, drinkable water.

4 CONCEPTUAL DESIGN

This will be a pressurized water filtration system constructed entirely out of PVC that conforms to the NSF/ANSI 61 standard regarding material used for potable water systems. This system can also mate with any different pipe material with the correct connectors. For example, these materials could include PVC, CPVC, PEX, copper or any other materials. Due to the system being located on the trunkline, before any water softeners or heaters, it will provide clean water to an entire home, not just one outlet.

4.1 CAD ASSEMBLED SYSTEM DESIGN

This is a fully assembled system as a CAD model. In the pictures below (Figures 6,7) the water flows from left to right, as indicated by the blue arrow.

Figure 6: Fully Assembled System Design

4.2 CAD CONSTRUCTED FILTER BODY.

The constructed filter body is comprised of 8 components: two 6-inch to 1-inch PVC reducer bushings, a water diffusion plate, two 6-inch PVC couplers, one 6-inch gravity drain line, and one puck filter screen and its associated holder. The water will flow from left to right as indicated by the blue arrow.

Figure 7: Constructed Filter Body

4.3 DIFFUSION PLATE AND SCREEN HOLDER

These components are the diffusion plate and screen holder which are found inside the constructed filter body. The filter screen used is a 304 stainless steel espresso puck screen with a mesh fineness of $100\mu m$ and maximum rated pressure of 20bar. This screen was optimal due to its readily availability, low cost, corrosive resistance properties, mesh fineness, and ultimate strength.

Figure 9: Water Diffusion Plate

Figure 8: Puck Filter Screen Holder

4.4 A.O. SMITH LARGE SEDIMENT FILTER

The A.O. Smith Large Sediment filter is intended to catch any filtrate blowby if there is a puck filter screen failure. Having the large sediment filter installed after the charcoal filter can also allow for the homeowner to visually inspect the water quality being produced as well as diagnose any major problems. While the manufacturer states the life of these filters is only six months, this is due to the filter filtering out all contaminants, not being the secondary filter. Due to this the filter will last longer than 6 months.

Figure 10: A.O. Smith Large Sediment Filter

4.5 BALL VALVES AND PRESSURE GAUGES

There are two 1-inch ball vales that allow the homeowner to isolate the filter from the rest of the home for service with minimal water loss. There are also two pressure gauges within the system. These gauges were strategically placed to allow for the monitoring of the system's internal conditions and diagnose any major issues.

Figure 11: 1-inch PVC Ball Valve

Figure 12: Pressure Gauge

5 SYSTEM HIERARCHY

The system hierarchy has two main components, each with their own sub-assemblies. The housing component consists of piping and hardware. The filter component consists of the charcoal filtrate, diffusion plate, and the filter screen.

Figure 13: System Hierarchy

5.1 HOUSING SUBASSEMBLY

The systems housing is comprised of the pipe feeding the system, the hardware holding the filters together, and the specifications that go along with the housing subsystem.

5.1.1 Pipe

The pipe sub-assembly is comprised of several different components. The components are as follows: One 18 inch long, 6 inch wide, SDR 35 Gravity drain line for the filters main

body. 10 feet total of 1 inch schedule 40 PVC pipe. Two 6-inch to 1-inch PVC bushing reducers. Two 6-inch PVC couplers, attaching the reducer bushing to the 6-inch filter body.

5.1.2 Hardware

The hardware sub-assembly is also comprised of several different components which are as follows: Two 1-inch PVC ball valves. Two single dial pressure gauges to read inlet and outlet pressure. One A.O. smith off the shelf large sediment filter to catch any possible blow by from the charcoal filter.

5.1.3 Specifications

The specifications for all components used in the housing are as follows: According to Charlotte Pipe, their 6-inch SDR 35 Gravity drainpipe has a burst pressure of 117.5 psi. The 1inch schedule 40 PVC pipe is rated for 450 psi for cold water. The 1-inch ball valve is rated for 150 psi for cold water. The pressure gauges are rated for a maximum of 200 psi. While SDR 35 piping is not approved for potable water usage, it was selected for the purpose of prototyping to its lower cost and because it was readily accessible in 24-inch segments where the NSF approved piping was sold by 20-foot segments. In a real installation the filter will conform to NSF/ANSI 61, which is the standard that governs the materials to be used for potable water.

5.2 FILTER SUBASSEMBLY

The filter is comprised of charcoal filtrate, a diffusion plate, and a filter screen. These objects are held within the systems housing of the low-cost water filter.

5.2.1 Charcoal Filtrate

The filtration media is activated charcoal. Activated charcoal is widely used as a filter media for water filtration. The charcoal was crushed to a volume of 0.5 cubic-inches or smaller. It was then activated, by soaking in lemon juice and water, over a period of a week then loaded

into the filter body. There are a multitude of ways to activate charcoal, but this was the easiest, safest, and cheapest way to do so (wanow M).

5.2.2 Diffusion Plate

A diffusion plate was added on top of the charcoal filtrate to even disperse the water across all the filtration media. This also regulates the pressure and helps mitigate channeling, which would decrease the effectiveness of the filter. The diffusion plate itself was 3D printed using ASA with a 50% infill using a gyroid pattern. A Gyroid pattern was chosen because this infill type provides support on all walls and faces. ASA was chosen as the material because it is highly resistant material.

5.2.3 Screen

The screen chosen was a 304 stainless steel espresso screen with a fineness of 100µm. This screen is designed to be used at pressures up to 20-bar and is reusable. When the homeowner services their filter, this screen can be easily removed, cleaned, and reinstalled.

6 FULLY ASSEMBLED SYSTEM

This is the fully assembled system. The water flows from left to right. The water Feeds in from the hose on the left side where it passes through the ball valve, then the inlet side pressure gauge, our constructed filter, the A.O. Smith large Sediment filter, the outlet pressure gauge, the final ball valve.

Figure 14: Constructed Filter

7 SYSTEM TESTS

The Low-cost water filter system had three separate tests ran on it, these tests showed its strengths of reaching desirable psi levels, filtering out contaminants, and making clean, drinkable water. It also showed its failure analysis in action.

7.1 System Test One and Results

Test one was completed by running water through the testing pipe to ensure that the system will reach at least 40psi before it would be attached to the filter body. The parts used within this test include a PVC adapter to connect the pipe and hose together, a ball valve to regulate and build pressure, and a pressure gauge to read the pressure. The result of this test was 48 psi, which is in between the normal 40- 60 psi (Gallagher) that wells within a home produce.

7.2 System Test Two and Results

Test two consisted of gluing and cementing the system together and running an initial test to make sure water would pass through the system. Once the water passed through the system without breaking any of the joints, water was collected in a glass mason jar, and noticed the water was a dark grey color. So, the water ran longer to clear this charcoal residue. Once the water was clear, another sample was collected, and tested, in this test it was noticed that the pH had lowered, compared to the spigot. The water ran for another 5 minutes and was tested. The results are shown below in Table 2. After the water was tested and showed all allowable numbers, the team taste tested the water, and found that the water was very drinkable, other than the initial charcoal flavor, the flavor will dissipate after running the water, which this is expected with any carbon-based filter in the very beginning.

As the pH lowered and became better, there was a drop in cyanuric acid carbonate and alkalinity, the numbers are shown in Table 2 below.

7.2.1 Test Results

This is the spigot baseline and Britta test results compared to the low-cost filter test. The filter is labeled constructed filter, and as you can see, the pH is the lowest of all the other baselines, and compared to the water from the spigot, the day of the test, hardness, carbonate, and alkalinity have all lowered also. Once again this is all that was tested due to the other contaminate levels remaining zero throughout the duration of the test.

Contaminate	Spigot Baseline	Britta	Constructed Filter	Maximum Allowable
Total Hardness	120	0	50	N.A.
Sulfite	0	0	0	250
Cyanuric Acid	0	0	0	200

Table 2:	Testing	Results
----------	---------	---------

Carbonate	240	180	180	180 (suggested)
Total Alkalinity	240	120	180	30-400 (suggested)
рН	8	7.6	6.8	6.5-8.5 (suggested)

7.3 System Test Three and Results

Test three consisted of digging dirt from Dr. Ely's yard and mixing it with water in a 50/50 mixture. This mixture is called a "dirt slurry." The dirt slurry (2 containers) was poured into the hose attachment on the testing pipe shown below in Figure 14. The hose was then connected back on the hose attachment.

Water was run through the system for 30 seconds, to clear the old, already tested good water, out of the system. Once the 30 seconds mark was achieved, a water sample was taken. This sample was not yet clear, so it was tested after 60 seconds. At this point the water became clear, drinkable water that had no increase in the amount of tested for contaminants within it. This water also tasted better than the previous, charcoal flavored water originally tasted in System Test 2.

The team believes that there was no change of contaminants within the test due to the test strips only testing for inorganics and heavy metals and inorganics, which are what most common households test for, not the organic items placed into the system. This test also showed a failure of the system. The system had 2 pressure gauges that read inlet and outlet pressure. If one of these spikes or drops there could be an error within the filter body. While performing this test, the outlet pressure gauge dropped significantly, which resulted in a clogged system. This clog could be from digging up a rock, a piece of grass, or even a tiny stick. All these factors could have been the reason for the pressure drop. Due to having a change of parts from what was ordered, the filter body would have needed to be cut open to diagnose the issues.

Figure 15: Dirt Slurry

7.4 System Test 3 Water Appearances

As mentioned above, the supply side pipe of the pipe was filled with a dirt slurry to test the filter's capability. This method of testing is more extreme than a well would probably ever see as it simulates a total well integrity failure, or cave-in. After introducing the slurry and allowing the filter to push out the existing clean water, there was a major difference in the water clarity within 30 seconds and 1 minute.

Figure 16: Filter Time Milestones

8 BUDGET

The University gave the project a total budget of \$500.00, with a goal to produce the prototype for less than \$350.00 (Table 3). The team succeeded in completing the project under budget with a total of \$322.24, even with the extra components included. There is also an actual instillation estimate from a local plumbing company, Altstadt Hoffman Plumbing, of \$140.00. There was then a cost estimate for a live installation, which excludes the extra components, materials, and uses the materials that conform to the NSF/ANSI 61 standard which governs the materials used for potable water (Table 4). This expected actual costs table also includes the estimate installation fee from the plumbing company.

Table 3: Prototype Costs

Item (Prototype Costs)	quantity	cost (\$)
PVC Adapter T	2	6.22
Teflon Tape	1	0.89
Ball Valve	2	9.8
PVC Adapter 1	1	1.65
PVC Adapter 2	2	4.22
PVC Reducer Bushing	2	84.98
A.O Smith Filter Housing	1	29.99
PVC Purple Primer	1	9.27
IO-ft. PVC Pipe	1	7.56
Pressure Gauge	2	23.96
Lump Charcoal (hardwood only)	1	13.47
100% Lemon Juice (1.8L.)	2	12.96
ASA Filament	1	20.79

A.O Smith Sediment Filter	1	16.99
6-in. PVC Gravity Drain Line	1	15.27
All-Purpose Cement (PVC)	1	10.28
Espresso Screens	2	25.48
NDS 6-in PVC Coupling	2	16.76
¹ /4-in. x ¹ /2-in. Threaded Male Adapter Bushing	2	11.7
	Total Cost	322.24

Table 4: Expected Actual Costs for Live Install

Item (Expected Actual Costs)	quantity	cost (\$)
PVC Adapter T	2	\$	6.22
Teflon Tape	1	\$	0.89
Ball Valve	2	\$	9.80
PVC Adapter 1	1	\$	1.65

PVC Adapter 2	2	\$ 4.22
PVC Reducer Bushing	2	\$ 84.98
A.O Smith Filter Housing	1	\$ 29.99
PVC Purple Primer	1	\$ 9.27
4' PVC Pipe	1	\$ 3.02
Pressure Gauge	2	\$ 23.96
Lump Charcoal (hardwood only)	1	\$ 13.47
100% Lemon Juice	2	\$ 12.96
ASA Filament	1	\$ 2.00
A.O Smith Large Sediment Filter	1	\$ 16.99
PVC DWV PE Solid Core Pipe	1	\$ 12.30
All-Purpose Cement (PVC)	1	\$ 10.28
Puck Filter Screens	1	\$ 12.74
NDS 6-in PVC Sewer and Drain Coupling	2	\$ 16.76
1/4in x 1/2in Threaded Male Adapter Bushing	2	\$ 11.70

Parts Cost	\$ 283.20
Install Cost	\$ 140.00
Total Cost	\$ 423.20

9 CAPITALIZED WORTH OF EQUIVALENCE

The calculated capitalized worth of equivalence for the constructed filter compared to competitive products was built. Capitalized worth equivalence was chosen over an A/P calculation because capitalized worth is more commonly used for permanent installations and construction projects where they have an "infinite" life. The initial costs and replacement costs of each system were found by visiting the manufacturer's suggested retailer's website and pricing the replacements out and applying the \$140.00 installation quote to each system, except the Britta. Each system, except the Britta, has a manufacturer suggested life of no more than 5 years. It is also estimated that the constructed filter will also have a life of 5 years. The produced filter also priced, at the time of this documents creation, that a homeowner could buy 5lbs of activated charcoal for \$24.00, which is roughly the amount of filtrate the filter system used. To address Brittas' short life, which the manufacturer states last no more than two months, which calculated the cost of replacements every two months for five years. This allows the team to make an equitable comparison. Table 5, shown below shows that the constructed filter system is significantly cheaper over an "infinite" life. These calculations were performed using a federal

interest rate, at the time, of 3%. Additionally, the price of the prototype was used in this calculation instead of the expected actual costs because these were real costs, not theoretical.

Filtration System	Initial Costs (\$)	Replacement Costs (\$)	Capitalized Worth (\$)
Our Filter	462.24	24.00	612.96
Britta	33.58	189.67	1,226.71
A.O. Smith	540.00	540.00	3,931.20
Premier Sales	2,030.00	2,030.00	14,778.40

Table 5: Capitalized Worth of Equivalence

10 EVALUATION CRITERIA

The project exceeded the evaluation criteria set for it. It was well under the \$350.00 budget limit and filtered out all the tested contaminants nearly as efficiently as the 12 stage Britta filter.

11 PROJECT CHALLENGES

Several challenges were faced in this project due to wrong components, poor manufacturing, and missing orders. These issues caused the project to take longer to complete, however were easily overcome.

11.1 WRONG COMPONENTS

The reducers ordered for this project were 6-inch to 1 inch with a certain style. The company shipped 6-inch to 2-inch reducers with a 2-inch to 1-inch reducer plastic welded into it. Which was also a different style than what was originally ordered. Because of this change the proto prototype became solid and glued, rather than removable and clamped, which added two extra components. If the project was to be reconstructed, it would need to have the original components ordered.

11.2 FAULTY COMPONENTS

The pressure gauges that received were not assembled in the same manner. The first gauge that was fitted to the pipe was easy to separate from its accompanying nut. The second one, however, had red Loctite on the threads locking it together. The team broke it trying to get the gauge and nut apart which halted testing until a new one could be purchased.

11.3 SHIPMENTS

There was also a shipped order that was delayed from distributions for several days. This slowed down the building stage significantly. After the package was received, it appeared to have destroyed threads on one of the socket adapters, which was required for this component, which made the adapter totally unusable.

Even though there were several challenges faced, the team was able to adapt to them, and get the prototype finished on time and within budget.

30

BIBLIOGRAPHY

A.O. Smith. Whole House Water Filter. 7 December 2023.

Brita. *Water Pitchers Products*. 1 December 2023. 2023.

- Enviornmental Protection Agency. *National Primary Drinking Water Regulations*. 9 January 2023. 1 3 2023.
- Gallagher, Jake. *WHAT IS GOOD WATER PRESSURE FOR A WELL?* 5 December 2023. 7 December 2023.
- Misachi, John. What Percentage Of The Earth's Water Is Drinkable? 14 February 2018. https://www.worldatlas.com/articles/what-percentage-of-the-earth-s-water-is-drinkable.html>.
- NSF. A.O. Smith. Whole House Water Filter. . 1 January 2023.
- —. NSF/ANSI 61: Drinking Water System Components Health Effects. 1 January 2016.
- Parallax Incorporated. *Store: 7.2V Motor, Bracket and Wheel Kit.* n.d. 25 September 2011. http://www.parallax.com/Store/Robots/AllRobots/tabid/755/ProductID/587/List/0/Def ault.aspx?SortField=ProductName,ProductName>.
- Premier Sales. *PS-2000PB UF Membrane with 0.5 Micron Carbon Filter for Lead, Chemicals, Heavy Metals.* 7 12 2023.

Spears manufacturing. *Dimensions & Pressure Ratings*. n.d.

wanow M, Gärtner T, Sieber V, König B. *Activated carbon as catalyst support: precursors, preparation, modification and characterization.* 2 June 2020. 1 October 2023.

Water.org. A Health Crisis. 1 January 2023. 12 November 2023.

APPENDIX 1: SCHEDULE

	Task						Qtr 2, 2023				Qtr 3, 2023	Qtr 3, 2023	Qtr 3, 2023	Qtr 3, 2023 Qtr 4, 2023	Qtr 3, 2023 Qtr 4, 2023	Qtr 3, 2023 Qtr 4, 2023	Qtr 3, 2023 Qtr 4, 2023	Qtr 3, 2023 Qtr 4, 2023	Qtr 3, 2023 Qtr 4, 2023	Qtr 3, 2023 Qtr 4, 2023	Qtr 3, 2023 Qtr 4, 2023
	Mode 💌	Task Name	 Duration 		Finish 👻	Predecessors	4	Apr	Apr May	Apr May Jun	Apr May Jun Jul	Apr May Jun Jul Aug	Apr May Jun Jul Aug Sep	Apr May Jun Jul Aug Sep Oct	Apr May Jun Jul Aug Sep Oct No	Apr May Jun Jul Aug Sep Oct Nov	Apr May Jun Jul Aug Sep Oct Nov	Apr May Jun Jul Aug Sep Oct Nov	Apr May Jun Jul Aug Sep Oct Nov	Apr May Jun Jul Aug Sep Oct Nov	Apr May Jun Jul Aug Sep Oct Nov
2	-	Pre Senior Design Power Point	91 days	Tue 4/18/23	Tue 8/22/23																
3	*	Pre Senior Design Report	91 days	Tue 4/18/23	Tue 8/22/23																
1	*	Summer	77 days	Mon 5/8/23	Tue 8/22/23																
5	*	BOM	30 days	Tue 8/22/23	Mon 10/2/23							,									
22	*	Senior Design Presentation	50 days	Tue 8/22/23	Mon 10/30/23							,									
23	*	Senior Design Report	63 days	Tue 8/22/23	Thu 11/16/23							· · · · · · · · · · · · · · · · · · ·									
4	*	CAD Drawings	40 days	Mon 8/28/23	Fri 10/20/23	1							· · · · · · · · · · · · · · · · · · ·	Ť	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	*
6	*	Order Materials pt.1	1 day	Mon 10/2/23	Mon 10/2/23	5								() () () () () () () () () ()						() () () () () () () () () ()	
7	*	Wait for Materials	10 days	Wed 10/4/23	Tue 10/17/23	6								i internet in the second s							
9	*	Crush Charcoal	1 day	Tue 10/17/23	Tue 10/17/23	7								le la constante de la constante	1						la de la companya de
8	*	3D Print	3 days	Wed 10/18/23	Fri 10/20/23	7								i i i i i i i i i i i i i i i i i i i	i	≜	i	↓	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	↓	
10	*	Allow Charcoal to Soak	5 days	Wed 10/18/23	Tue 10/24/23	9								in 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19	i	📥 🛛	📥 🛛	L	📥 🛛	L	in 1997
11	*	Order Material pt.2	1 day	Mon 10/23/23	Mon 10/23/23										n de la companya de l	N N N			N		n in the second s
12	*	Wait for Materials	7 days	Tue 10/24/23	Wed 11/1/23	11								<u></u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		i		
14	*	Construct filter body	4 days	Sun 10/29/23	Wed 11/1/23	12								George Contraction of the second s							
13	*	Test Water Quality	1 day	Tue 10/31/23	Tue 10/31/23																
15	*	Test system #1	1 day	Wed 11/1/23	Wed 11/1/23																
16	*	Senior PDR Due	5 days	Mon 10/30/23	Fri 11/3/23	22								(i i i i i i i i i i i i i i i i i i i	i	i i i i i i i i i i i i i i i i i i i	i iii iii iii iii iii iii iii iii iii	i	i i i i i i i i i i i i i i i i i i i	i i i i i i i i i i i i i i i i i i i
18	*	Test System #2	1 day	Mon 11/6/23	Mon 11/6/23	15									1	1		1	1	1	
20	*	Attach second filter	1 day	Tue 11/7/23	Tue 11/7/23										1 C C C C C C C C C C C C C C C C C C C						
21	*	Test System #3	1 day	Tue 11/7/23	Tue 11/7/23	20									1			2 I I I I I I I I I I I I I I I I I I I	1		
17	*	Senior Rough Draft Due	1 day	Fri 11/17/23	Fri 11/17/23	23															
19	*	Senior Poster Due	1 day	Fri 11/24/23	Fri 11/24/23																
24	*	Final Presentation	1 day	Fri 12/1/23	Fri 12/1/23	16															
27	*	Poster Night	1 day	Thu 12/7/23	Thu 12/7/23	19															
25	*	Final Report Due	1 day	Fri 12/8/23	Fri 12/8/23	17															
26	-	Report to SOAR	1 day	Eri 12/8/23	Eri 12/9/22																

APPENDIX 2: FMEA

Process Function	Potential Failure Mode	Potential Effect(s) of Failure	Sev	Potential Causes/ Mechanisms of failure	Occur	Current process controls	Detect	RPN
	Filter does not meet	Filter was manufactured						
Water Filter	purity standards	Incorrectly	10	Incorrectly Manufactured	3	Replace with working filter	10	300
	Filter does not meet					Buy a new filter before		
Water Filter	purity standards	Replacement time	6	Filter does not last a long time	10	guage is low	4	240
	Water continues to run	High pressure water will		Filter removed before valve is completely		Filter cannot come off		
Shut off Valve in	into the filter system	spray	8	shut	2	until valve is shut	9	144
	Water continues to run	High pressure water will				Filter cannot come off		
Shut Off Valve in	into the filter system	spray	8	Clamps not secured into place	2	until valve is shut	9	90
	Water backflows from					Filter cannot come off		
Shut off valve Out	inside the housing.	User may get water on them	5	Clamps not secured into place	2	until valve is shut	9	90
	Water backflows from	🕜 Delay 👻 🗙 Cancel 🚯 Opt	ons			Filter cannot come off		
Shut off valve Out	inside the housing.	Air gets into water line	5	Clamps not secured into place	2	until valve is shut	9	90
	Filter does not meet	ig the Mode button or click the New	0			Unclamp, unclogg, re-		
Water Filter	purity standards	Clogged	10	Debreis inside of filter	3	screw	2	60
Outlet Guage	No reading	Unable to diagnose issues	6	Wears down overtime	6	Replace with working	1	36
	Filter does not meet							
Water Filter	purity standards	Not screwed inall the way	5	User didn't tighten the filter	3	tighten filter	2	30
Inlet Guage	No reading	Unable to see inlet pressure	2	Wears down overtime	6	guage	1	12

Figure 18: FMEA

APPENDIX 3: PIPE SPECIFICATION

A

Pipe Dimension Reference Chart

Pipe O.D. Sl	Type Size DR	LH PIP 91	80 PIP 51	100 PIP 41	125 PIP 32.5	CL 63 IPS 64	CL 100 IPS 41	SEWER PSM 35	CL 125 IPS 32.5	CL 160 IPS 26	CL 200 IPS 21	40 DWV IPS	80 DWV IPS -	SCH 40 IPS —	SCH 80 IPS —	C-900 CI DR 18
4"	O.D. I.D. Wall PSI	4.130 4.000 .065 43	4.130 3.968 .081 80	4.130 3.928 .101 100	4.130 3.876 .127 125	4.500 4.360 .070 63	4.500 4.280 .110 100	4.215 3.89 0.125 117.5	4.500 4.224 .138 125	4.500 4.154 .173 160	4.500 4.072 .214 200	4.500 3.998 .237 100	4.500 3.786 .337 100	4.500 3.998 .237 220	4.500 3.786 .337 320	4.800 4.22 .267 150
6"	O.D. I.D. Wall PSI	6.140 6.000 .070 43	6.140 5.898 .121 80	6.140 5.840 .150 100	6.140 5.762 .189 125	6.625 6.417 .104 63	6.625 6.301 .162 100	6.275 5.742 0.18 117.5	6.625 6.217 .204 125	6.625 6.115 .255 160	6.625 5.993 .316 200	6.625 6.031 .280 100	6.625 5.709 .432 100	6.625 6.031 .280 180	6.625 5.709 .432 280	6.900 6.08 .383 150
8"	O.D. I.D. Wall PSI	8.160 7.984 .088 43	8.160 7.840 .160 80	8.160 7.762 .199 100	8.160 7.658 .251 125	8.625 8.355 .135 63	8.625 8.205 .210 100	8.4 7.665 .024 117.5	8.625 8.095 .265 125	8.625 7.961 .332 160	8.625 7.805 .410 200	8.625 7.943 .322 100	8.625 7.565 .500 100	8.625 7.943 .322 160	8.625 7.565 .500 250	9.050 7.97 .503 150
10"	O.D. I.D. Wall PSI	10.200 9.980 .110 43	10.200 9.800 .200 80	10.200 9.702 .249 100	10.200 9.572 .314 125	10.750 10.414 .168 63	10.750 10.226 .262 100	10.5 9.563 0.3 117.5	10.750 10.088 .331 125	10.750 9.924 .413 160	10.750 9.748 .511 200	10.750 9.976 .365 100	10.750 9.492 .593 100	10.750 9.976 .365 140	10.750 9.492 .593 230	11.100 9.78 .617 150
12"	O.D. I.D. Wall PSI	12.240 11.975 .132 43	12.240 11.760 .240 80	12.240 11.642 .299 100	12.240 11.486 .377 125	12.750 12.352 .199 63	12.750 12.128 .311 100	12.5 11.361 0.36 117.5	12.750 11.966 .392 125	12.750 11.770 .490 160	12.750 11.538 .606 200	12.750 11.890 .406 100	12.750 11.294 .687 100	12.750 11.890 .406 130	12.750 11.294 .687 230	13.200 11.63 .733 150
14"	O.D. I.D. Wall PSI	14.280 14.000 .140 43	14.280 13.720 .280 80	14.280 13.584 .348 100	14.280 13.402 .439 125	•	•	•	•	14 12.86 0.538 160	*	14.000 13.072 .438 100	14.000 12.410 .750 100	14.000 13.072 .438 130	14.000 12.410 .750 220	15.3 13.48 0.85 235
15"	O.D. I.D. Wall PSI	15.300 14.970 .165 43	15.300 14.700 .300 80	15.300 14.550 .375 100	15.300 14.358 .471 125	•	•	15.3 13.898 0.44 117.5	•	•	•	•	•	•	•	•
16"	O.D. I.D. Wall PSI	•	•	•	•	•	•	•	•	16 14.696 0.615 160	•	16.000 14.940 .500 100	16.000 14.214 .843 100	16.000 14.940 .500 130	16.000 14.214 .843 220	17.4 15.33 0.967 235
18"	O.D. I.D. Wall PSI	18.360 17.964 .198 43	18.701 17.967 .367 80	18.701 17.789 .456 100	18.701 17.551 .575 125	•	18.000 17.122 .439 100	18.701 17.629 0.536 117.5	•	18.000 16.616 .692 160	*	18 16.808 0.562 100	18.000 16.014 .937 100	18 16.808 0.582 120	18.000 16.014 .937 220	19.5 17.83 1.083 235
20"	O.D. I.D. Wall PSI	20.400 19.962 .219 43	•	•	•	*	20.000 19.026 .487 100	•	•	20.000 18.462 .769 160	•	20 18.863 0.533 100	20 17.814 1.031 100	20 18.863 0.533 120	20 17.614 1.031 220	21.6 19.03 1.2 235
21"	O.D. I.D. Wall PSI	•	22.047 21.183 .432 80	22.047 20.971 .538 100	22.047 20.691 .678 125	*	•	22.047 20.783 0.632 117.5	•	*	*	*		*	*	*
24"	O.D. I.D. Wall		24.803 23.831 .486	24.803 23.593 .605	24.803 23.277 .763	*	24.000 22.748 .585	24.8 23.381 0.711		24 22.043 0.923	*	24 22.54 0.687	24 21.418 1.218	24 22.54 0.687	24 21.418 1.218	25.800 23.73 1.200

Figure 19: Spears Dimensions and Pressure Ratings (Spears manufacturing)

APPENDIX 4: NATIONAL PRIMARY DRINKING WATER REGULATIONS

National Primary Drinking Water Regulations

Contaminant	MCL or TT ¹ (mg/L) ²	Potential health effects from long-term ⁵ exposure above the MCL	Common sources of contaminant in drinking water	Public Health Goal (mg/L) ²
Acrylamide	TT4	Nervous system or blood problems; increased risk of cancer	Added to water during sewage/ wastewater treatment	zero
Alachlor	0.002	Eye, liver, kidney, or spleen problems; anemia; increased risk of cancer	Runoff from herbicide used on row crops	zero
Alpha/photon emitters	15 picocuries per Liter (pCi/L)	Increased risk of cancer	Erosion of natural deposits of certain minerals that are radioactive and may emit a form of radiation known as alpha radiation	zero
o Antimony	0.006	Increase in blood cholesterol; decrease in blood sugar	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder	0.006
Risenic	0.010	Skin damage or problems with circulatory systems, and may have increased risk of getting cancer	Erosion of natural deposits; runoff from orchards; runoff from glass & electronics production wastes	0
Asbestos (fibers >10 micrometers)	7 million fibers per Liter (MFL)	Increased risk of developing benign intestinal polyps	Decay of asbestos cement in water mains; erosion of natural deposits	7 MFL
Atrazine	0.003	Cardiovascular system or reproductive problems	Runoff from herbicide used on row crops	0.003
ဆို Barium	2	Increase in blood pressure	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits	2
Benzene	0.005	Anemia; decrease in blood platelets; increased risk of cancer	Discharge from factories; leaching from gas storage tanks and landfills	zero
Benzo(a)pyrene (PAHs)	0.0002	Reproductive difficulties; increased risk of cancer	Leaching from linings of water storage tanks and distribution lines	zero
So Beryllium	0.004	Intestinal lesions	Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace, and defense industries	0.004
Beta photon emitters	4 millirems per year	Increased risk of cancer	Decay of natural and man-made deposits of certain minerals that are radioactive and may emit forms of radiation known as photons and beta radiation	zero
Bromate	0.010	Increased risk of cancer	Byproduct of drinking water disinfection	zero
တို့ Cadmium	0.005	Kidney damage	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints	0.005
Carbofuran	0.04	Problems with blood, nervous system, or reproductive system	Leaching of soil fumigant used on rice and alfalfa	0.04
		ECTION INORGANIC MICE	COORGANISM ORGANIC RAD	NONUCLIDES

Figure 20: EPA Water Regulations 1 (Enviornmental Protection Agency)

	Contaminant	MCL or TT ¹ (mg/L) ²	Potential health effects from long-term ³ exposure above the MCL	Common sources of contaminant in drinking water	Public Healtl Goal (mg/L) ²
\bigcirc	Carbon tetrachloride	0.005	Liver problems; increased risk of cancer	Discharge from chemical plants and other industrial activities	zero
Ĵ	Chloramines (as Cl ₂)	MRDL=4.01	Eye/nose irritation; stomach discomfort; anemia	Water additive used to control microbes	MRDLG=41
\bigcirc	Chlordane	0.002	Liver or nervous system problems; increased risk of cancer	Residue of banned termiticide	zero
-	Chlorine (as Cl ₂)	MRDL=4.01	Eye/nose irritation; stomach discomfort	Water additive used to control microbes	MRDLG=41
+	Chlorine dioxide (as ClO ₂)	MRDL=0.81	Anemia; infants, young children, and fetuses of pregnant women: nervous system effects	Water additive used to control microbes	MRDLG=0.8
<u>L</u>	Chlorite	1.0	Anemia; infants, young children, and fetuses of pregnant women: nervous system effects	Byproduct of drinking water disinfection	0.8
\bigcirc	Chlorobenzene	0.1	Liver or kidney problems	Discharge from chemical and agricultural chemical factories	0.1
స్తో	Chromium (total)	0.1	Allergic dermatitis	Discharge from steel and pulp mills; erosion of natural deposits	0.1
స్తోం	Copper	TT ^s ; Action Level=1.3	Short-term exposure: Castrointestinal distress. Long- term exposure: Liver or kidney damage. People with Wilson's Disease should consult their personal doctor if the amount of copper in their water exceeds the action level	Corrosion of household plumbing systems; erosion of natural deposits	1.3
3	Cryptosporidium	Π7	Short-term exposure: Gastrointestinal illness (e.g., diarrhea, vomiting, cramps)	Human and animal fecal waste	zero
ష్ఠం	Cyanide (as free cyanide)	0.2	Nerve damage or thyroid problems	Discharge from steel/metal factories; discharge from plastic and fertilizer factories	0.2
\bigcirc	2,4-D	0.07	Kidney, liver, or adrenal gland problems	Runoff from herbicide used on row crops	0.07
\bigcirc	Dalapon	0.2	Minor kidney changes	Runoff from herbicide used on rights of way	0.2
C	1,2-Dibromo-3- chloropropane (DBCP)	0.0002	Reproductive difficulties; increased risk of cancer	Runoff/leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards	zero
Ĉ	o-Dichlorobenzene	0.6	Liver, kidney, or circulatory system problems	Discharge from industrial chemical factories	0.6
C	p-Dichlorobenzene	0.075	Anemia; liver, kidney, or spleen damage; changes in blood	Discharge from industrial chemical factories	0.075
C	1,2-Dichloroethane	0.005	Increased risk of cancer	Discharge from industrial chemical factories	zero
LEG		A	×%		

Figure 21: EPA Water Regulations 2 (Enviornmental Protection Agency)

ational Primary Drink	ting Water Re	egulations		EPA 816-F-09	-004 MAY 200
Contamina	int	MCL or TT ¹ (mg/L) ²	Potential health effects from long-term ⁵ exposure above the MCL	Common sources of contaminant in drinking water	Public Health Goal (mg/L) ²
1,1-Dichlord	oethylene	0.007	Liver problems	Discharge from industrial chemical factories	0.007
Cis-1,2- Dichloroet	hylene	0.07	Liver problems	Discharge from industrial chemical factories	0.07
trans-1,2, Dichloroet	hylene	0.1	Liver problems	Discharge from industrial chemical factories	0.1
Dichlorom	ethane	0.005	Liver problems; increased risk of cancer	Discharge from industrial chemical factories	zero
1,2-Dichlor	opropane	0.005	Increased risk of cancer	Discharge from industrial chemical factories	zero
Di(2-ethylh adipate	iexyl)	0.4	Weight loss, liver problems, or possible reproductive difficulties	Discharge from chemical factories	0.4
Di(2-ethylh phthalate	iexyl)	0.006	Reproductive difficulties; liver problems; increased risk of cancer	Discharge from rubber and chemical factories	zero
Dinoseb		0.007	Reproductive difficulties	Runoff from herbicide used on soybeans and vegetables	0.007
Dioxin (2,3,	7,8-TCDD)	0.00000003	Reproductive difficulties; increased risk of cancer	Emissions from waste incineration and other combustion; discharge from chemical factories	zero
Diquat		0.02	Cataracts	Runoff from herbicide use	0.02
Endothall		0.1	Stomach and intestinal problems	Runoff from herbicide use	0.1
Endrin		0.002	Liver problems	Residue of banned insecticide	0.002
Epichloroh	ıydrin	Π*	Increased cancer risk; stomach problems	Discharge from industrial chemical factories; an impurity of some water treatment chemicals	zero
Ethylbenze	ene	0.7	Liver or kidney problems	Discharge from petroleum refineries	0.7
Ethylene d	ibromide	0.00005	Problems with liver, stomach, reproductive system, or kidneys; increased risk of cancer	Discharge from petroleum refineries	zero
Fecal colife E. coli	orm and	MCL ⁶	Fecal coliforms and <i>E. coli</i> are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Microbes in these wastes may cause short term effects, such as diarnhea, cramps. nausea, headaches, or other symptoms. They may pose a special health risk for infants, young children, and people with severely compromised immune systems.	Human and animal fecal waste	zero ⁶
LEGEND			N INDRGANIC MICROORGA		

Figure 22: EPA Water Regulations 3 (Enviornmental Protection Agency)

	Contaminant	MCL or TT	Potential health effects from long-term ³ exposure	Common sources of contaminant	Public Healt
	Containinant	(mg/L) ²	above the MCL	in drinking water	Goal (mg/L) ²
ఇర్తిం	Fluoride	4.0	Bone disease (pain and tenderness of the bones); children may get mottled teeth	Water additive which promotes strong teeth; erosion of natural deposits; discharge from fertilizer and aluminum factories	4.0
3	Giardia lamblia	Π²	Short-term exposure: Gastrointestinal illness (e.g., diarrhea, vomiting, cramps)	Human and animal fecal waste	zero
\bigcirc	Glyphosate	0.7	Kidney problems; reproductive difficulties	Runoff from herbicide use	0.7
<u>Д</u>	Haloacetic acids (HAA5)	0.060	Increased risk of cancer	Byproduct of drinking water disinfection	n/aº
\bigcirc	Heptachlor	0.0004	Liver damage; increased risk of cancer	Residue of banned termiticide	zero
\bigcirc	Heptachlor epoxide	0.0002	Liver damage; increased risk of cancer	Breakdown of heptachlor	zero
0	Heterotrophic plate count (HPC)	TΓ	HPC has no health effects; it is an analytic method used to measure the variety of bacteria that are common in water. The lower the concentration of bacteria in drinking water, the better maintained the water system is.	HPC measures a range of bacteria that are naturally present in the environment	n/a
\bigcirc	Hexachlorobenzene	0.001	Liver or kidney problems; reproductive difficulties; increased risk of cancer	Discharge from metal refineries and agricultural chemical factories	zero
\bigcirc	Hexachloro- cyclopentadiene	0.05	Kidney or stomach problems	Discharge from chemical factories	0.05
సర్హి	Lead	TT ⁵ ; Action Level=0.015	Infants and children: Delays in physical or mental development; children could show slight deficits in attention span and learning abilities; Adults: Kidney problems; high blood pressure	Corrosion of household plumbing systems; erosion of natural deposits	zero
3	Legionella	Π7	Legionnaire's Disease, a type of pneumonia	Found naturally in water; multiplies in heating systems	zero
\bigcirc	Lindane	0.0002	Liver or kidney problems	Runoff/leaching from insecticide used on cattle, lumber, and gardens	0.0002
సర్తిం	Mercury (inorganic)	0.002	Kidney damage	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills and croplands	0.002
\bigcirc	Methoxychlor	0.04	Reproductive difficulties	Runoff/leaching from insecticide used on fruits, vegetables, alfalfa, and livestock	0.04
కర్యం	Nitrate (measured as Nitrogen)	10	Infants below the age of six months who drink water containing nitrate in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits	10
150		Ā			•

Figure 23: EPA Water Regulations 4 (Enviornmental Protection Agency)

lational Primary Drinking Water R	egulations		EPA 816-F-09	004 MAY 200
Contaminant	MCL or TT ¹ (mg/L) ²	Potential health effects from long-term ³ exposure above the MCL	Common sources of contaminant in drinking water	Public Health Goal (mg/L) ²
Nitrite (measured as Nitrogen)	1	Infants below the age of six months who drink water containing nitrite in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits	1
Oxamyl (Vydate)	0.2	Slight nervous system effects	Runoff/leaching from insecticide used on apples, potatoes, and tomatoes	0.2
Pentachlorophenol	0.001	Liver or kidney problems; increased cancer risk	Discharge from wood-preserving factories	zero
Picloram	0.5	Liver problems	Herbicide runoff	0.5
Polychlorinated biphenyls (PCBs)	0.0005	Skin changes; thymus gland problems; immune deficiencies; reproductive or nervous system difficulties; increased risk of cancer	Runoff from landfills; discharge of waste chemicals	zero
Radium 226 and Radium 228 (combined)	5 pCi/L	Increased risk of cancer	Erosion of natural deposits	zero
X Selenium	0.05	Hair or fingernail loss; numbness in fingers or toes; circulatory problems	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines	0.05
Simazine	0.004	Problems with blood	Herbicide runoff	0.004
Styrene	0.1	Liver, kidney, or circulatory system problems	Discharge from rubber and plastic factories; leaching from landfills	0.1
Tetrachloroethylene	0.005	Liver problems; increased risk of cancer	Discharge from factories and dry cleaners	zero
炎 Thallium	0.002	Hair loss; changes in blood; kidney, intestine, or liver problems	Leaching from ore-processing sites; discharge from electronics, glass, and drug factories	0.0005
Toluene	1	Nervous system, kidney, or liver problems	Discharge from petroleum factories	1
Total Coliforms	5.0 percent ^e	Coliforms are bacteria that indicate that other, potentially harmful bacteria may be present. See fecal coliforms and <i>E. coli</i>	Naturally present in the environment	zero
Total Trihalomethanes (TTHMs)	0.080	Liver, kidney, or central nervous system problems; increased risk of cancer	Byproduct of drinking water disinfection	n/aº
Toxaphene	0.003	Kidney, liver, or thyroid problems; increased risk of cancer	Runoff/leaching from insecticide used on cotton and cattle	zero
() 2,4,5-TP (Silvex)	0.05	Liver problems	Residue of banned herbicide	0.05
1,2,4- Trichlorobenzene	0.07	Changes in adrenal glands	Discharge from textile finishing factories	0.07
			RGANISM ORGANIC RADIO	DNUCLIDES

Figure 24: EPA Water Regulations 5 (Enviornmental Protection Agency)

Contaminant	MCL or TT ¹ (mg/L) ²	Potential health effects from long-term ³ exposure above the MCL	Common sources of contaminant in drinking water	Public Health Goal (mg/L) ²
ابا,ا۔ Trichloroethane	0.2	Liver, nervous system, or circulatory problems	Discharge from metal degreasing sites and other factories	0.2
) 1,1,2- Trichloroethane	0.005	Liver, kidney, or immune system problems	Discharge from industrial chemical factories	0.003
Trichloroethylene	0.005	Liver problems; increased risk of cancer	Discharge from metal degreasing sites and other factories	zero
Turbidity	π	Turbidity is a measure of the cloudiness of water. It is used to indicate water quality and filtration effectiveness (e.g., whether disease- causing organisms are present). Higher turbidity levels are othen associated with higher levels of disease-causing microorganisms such as viruses, parasites, and some bacteria. These organisms can cause short term symptoms such as nausea, cramps, diarrhea, and associated headaches.	Soil runoff	n/a
Uranium	30µg/L	Increased risk of cancer, kidney toxicity	Erosion of natural deposits	zero
Vinyl chloride	0.002	Increased risk of cancer	Leaching from PVC pipes; discharge from plastic factories	zero
Viruses (enteric)	π²	Short-term exposure: Gastrointestinal illness (e.g., diarrhea, vomiting, cramps)	Human and animal fecal waste	zero
Xylenes (total)	10	Nervous system damage	Discharge from petroleum factories; discharge from chemical factories	10
	T DIS		SM ORCANIC RADI	ONUCLIDES

NOTES

- Initians Machnum Contaminant Level Coal (MCLC): The level of a contaminant in drinking water below which there is no known or expected risk to haith MCLCs allow for a margin of safety and are non-enforceable public health goals. Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are est as close to MCL cas sessible using the best available treatment technology and taking cost into consideration. MCLs are enformable attranteris.
- wallable treatment technology and taking cost into consideration. MCLs are easible standards. mum Besidual Disinfectant Level Goal (MRDLG). The level of a drinking water extant below which there is no known or expected risk to health. MRDCGs do not the benefits of the use of disinfectants to control microbial contaminants. mum Besidual Disinfectant Level MBMCU; The highest level of a disinfectant ed in drinking water. There is convincing evidence that addition of a disinfectant says for control of microbial contaminants. meent Technique (TT). A required process intended to reduce the level of a minart in drinking water.

2 Units are in milligrams per liter (mg/L) unless otherwise noted. Milligrams per liter are equivalent to parts per million (ppm).

- Health effects are from long-term exposure unless specified as short-term ex Each water system must certify annually, in writing, to the state lusing third-party or manufactures certification that when it uses acylamide and/or epichlorohydrin to tu water, the combination for product) of does and monamer level does not exceed the levels specified, as follows. Acylamide = 0.05 percent does at 1 mg/L (or equivalent), Epichlorohydrin = 0.01 percent does at 20 mg/L for equivalent).
- Stead and copper are regulated by a Treatment Technique that requires system control the corrosiveness of their water. If more than 10 percent of tap water sa exceed the action level, water systems must take additional steps. For copper, ti level is 13 mg/l, and for lead is 0.015 mg/L.
- 6.4 routine sample that is fecal coliform-positive or E. coli-positive triggers repeat samples -if any repeat sample is total coliform-positive, the system has an acute MCL violation. A routine sample that is total coliform-positive and fecal coliform-registive or E. coli-negative triggers repeat samples-if any repeat sample is fecal coliform-positive or E. coli-positive, the system has an acute MCL violative. Sea also Total Coliforms.
- Core powers is a grant taken receiver the 10 data set of the construction of the const

- Gardia lambilia: 999 percent removal/inactivation Viruses 999 percent removal/inactivation Legionella No. Inimi, but EPA believes that if Cloridia and viruses are removed// inactivated, according to the treatment techniques in the surface water treatment truthidity For systems that use conventional or direct. It flations, at one time can to cloud the surface of the surface of the surface of the surface of the in any month. Systems that use intradict on the surface of the surface in any month. Systems that use intradict on the surface of the sin any month. Systems that use intradict on the surface of the surface in any month. Systems that use intradict on the surface of the sin the Surface of the surface of the surface of the surface water systems or the Long Term I Enhanced Surface Water Treatment. Surface water serving lever than to preserve the providence is a surface water the infinitual filter monitoring representation in the surface of the surface water serving lever than to providence in the surface water the infinitual term monitoring representation in the surface water the surface intervent of lever than the providence is a surface water the infinitual term monitoring representation in the surface of surface water serving lever than to the monitoring in surface water the surface the infinitual term monitoring representation in the surface of surface water the infinitual term monitoring representation the surface of surface water the infinitual term monitoring with the surface of surface water the surface of surface water to be in the s
- Interaction requirements, updated watershed control requirements copytapacification removal requirements, updated watershed control requirements Long Term 2 Enhanced Surface Water Treatment. This rule applies to all surface wa systems or ground water systems under the direct influence of surface water. The rul targets additional Copytopacifium treatment requirements for higher risk systems and includes providents to reduce risks from uncoreased finished water stronges Isoli and to ensure that the systems maintain microbial protection as they take steps to systems or ground in the origin systems to phong at lass 100000 people will not be optimised and the systems monitoring in October 2006 and the unalest systems (serving fewer than 10,000 people) will not be systems unal (October 2006). After completing monitoring and determining their treatment bin systems generally have three years to comply with any additional treatment requirements). Filter Backwash Recycling. The Filter Backwash Recycling Rule requires systems the recycle to testima specific treated in the strongent specific or phone in the systems the recycle to return begin the system strong the size in a thermate board systems to move than 50 accents amples total collioms positive in a month. Fig. You are syste
- 8 No more than 5.0 percent samples total coliform-positive in a month. (For water systems that collect lewer than 40 routine samples per month, no more than one sample can be total coliform-positive per month. Livery sample that has total coliform must be analyzed for either fecal coliforms of E. coli. If two consecutive 17- positive samples, and one is also positive for E. coli of fecal coliforms system has an acute MCL violation.
- Although there is no collective MCLG for this contraining organization material and the material of the material of the material of the material of the material contaminant group. There are individed MCLGs for some of the individual contaminants. **Haloseetic acids** dichlorancettic acid (zero) trichlorascetic acid (0.3 mg/L) **Trihalomethanes**. Informatic Althourse than a (zero), bromotorm (zero), disconcehoremethane (2006 mg/L)

Figure 25: EPA Water Regulations 6 (Enviornmental Protection Agency)

NATIONAL SECONDARY DRINKING WATER REGULATION

National Secondary Drinking Water Regulations are non-enforceable guidelines regarding contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water. EPA recommends secondary standards to water systems but does not require systems to comply. However, some states may choose to adopt them as enforceable standards.

Contaminant	Secondary Maximum Contaminant Level	
Aluminum	0.05 to 0.2 mg/L	
Chloride	250 mg/L	
Color	15 (color units)	
Copper	1.0 mg/L	
Corrosivity	Noncorrosive	
Fluoride	2.0 mg/L	
Foaming Agents	0.5 mg/L	
Iron	0.3 mg/L	
Manganese	0.05 mg/L	
Odor	3 threshold odor number	
рН	6.5-8.5	
Silver	0.10 mg/L	
Sulfate	250 mg/L	
Total Dissolved Solids	500 mg/L	
Zinc	5 mg/L	

FOR MORE INFORMATION ON EPA'S SAFE DRINKING WATER:

🛞 call: **(800) 426-4791**

ADDITIONAL INFORMATION:

To order additional posters or other ground water and drinking water publications, please contact the National Service Center for Environmental Publications at: (800) 490-9198, or email: nscep@bps-Imit.com.

Figure 26: EPA Water Regulations 7 (Enviornmental Protection Agency)

APPENDIX 5: WATER TESTING STRIPS

Figure 27: Tespert Well Water Test Strips

APPENDIX 6: PHOTOS

Figure 28: Photo Documentation 1

Figure 29: Photo Documentation 2

Figure 30: Photo Documentation 3

Figure 31: Photo Documentation 4

Figure 32: Photo Documentation 5