
University of Southern Indiana

Pott College of Science, Engineering, and Education

Engineering Department

8600 University Boulevard

Evansville, Indiana 47712

Automatic Cornhole Scoring System

Tim Desser & Ethan Watson

ENGR 491 – Senior Design

Fall 2023

Acknowledgments

There is much acknowledgement to the University of Southern Indiana and the entire

engineering department for their hospitality and assistance in the pursuit of an electrical

engineering degree. Many thanks to Dr. Art Chlebowski for helping find answers to all our

questions about digital communication protocols and signal analysis. A special thanks to Dr.

Paul Kuban for letting the group pursue this project, Mrs. Jamie Curry for her assistance in

purchasing the parts and components for this project, and Steven Molinet and Derek Statz for

their help with sensor testing and data interpretation on the prototype board.

iii

Abstract

The purpose of the project is to provide an automated cornhole scoring system to give a more

leisurely play as well as statistical analysis of play to the competitive players. This report

includes the history and evolution of cornhole, previous attempts to assist players in keeping

score, as well as the new project design to achieve the purpose previously stated. Parts and

components are listed as well as reasons they were chosen. A full-size board was designed using

3D modeling and a physical board was built. Components were assembled and installed on the

board. Components were tested using test code. Due to some components not operating as

expected, the gameplay code was not able to run on the completed board.

iv

Table of Contents

Acknowledgments... ii

Abstract .. iii

Table of Contents ... iv

Table of Figures .. vii

1. Introduction ... 1

1.1. History .. 3

1.2. Game Play and Scoring .. 4

1.3. Current Solutions.. 4

1.3.1. Manual Scoring ... 4

1.3.2. Remote Scoring ... 5

1.3.3. Auto-Scoring with RFID... 6

1.3.4. Autoscoring with Image Recognition ... 8

2. Objective Statement .. 9

3. Specific Aims .. 10

4. Requirements/Constraints/etc. .. 10

5. Code Logic .. 12

6. Project Design ... 16

6.1. Design Idea ... 16

6.2. Systems... 17

6.2.1. Sensors .. 18

6.2.2. Microcontroller ... 19

v

6.2.3. Power .. 20

6.2.4. Scoreboard .. 21

7. Game Board Design .. 22

7.1. Early Designs ... 22

7.1.1. Version 1 ... 23

7.1.2. Version 2 ... 24

7.2. Current Board Design... 26

7.3. Hole Design .. 28

7.4. Whole Board Assembly ... 29

8. Communication ... 30

8.1. Within the Board .. 30

8.2. Sensor to Microcontroller... 34

8.3. Board to Board ... 35

9. Testing... 36

9.1. Prototype .. 36

9.2. Testing Plan .. 42

10. Results .. 42

10.1. Accomplishments ... 43

10.2. Problems Faced... 44

11. What Could be Changed? .. 44

12. Project Planning ... 45

12.1. Bill of Materials .. 45

12.2. Timeline .. 47

vi

13. Conclusion ... 47

References ... 48

Appendix A: Project Timeline .. 50

Appendix B: ABET Outcome 2, Design Factor Considerations .. 51

Appendix C: TCS3472 Datasheet ... 52

Appendix D: SEN0296 Datasheet .. 79

Appendix E: ESP32 Datasheet .. 84

Appendix F: E-Ink Display Datasheet .. 112

Appendix G: Prototype Code .. 182

Appendix H: Primary Communication Code .. 186

Appendix I: Secondary Communication Code ... 190

Appendix J: Gameplay Code .. 191

Appendix K: Button Test .. 204

Appendix L: Single Color Sensor Test ... 205

Appendix M: Multiple Color Sensors Test ... 206

Appendix N: Pressure Sensors Test .. 212

Appendix O: LED On/Off Test ... 215

Appendix P: LED PWM Test ... 215

Appendix Q: Solenoid Test ... 216

Appendix R: Display Test ... 217

vii

Table of Figures

Figure 1.1: Game Play [2] ... 1

Figure 1.2: ACL Championship [2] .. 2

Figure 1.3: Early Cornhole Design [1] ... 3

Figure 1.4: Manual Cornhole Scorekeeper [4] ... 5

Figure 1.5: LED Remote Scoring [2] .. 6

Figure 1.6: RFID Scoring [3] .. 8

Figure 1.7: Image Recognition Scoring [4] .. 9

Figure 4.1: Universal Cornhole Board Dimensions [5] .. 11

Figure 6.1: 3D Model of Design ... 16

Figure 6.2: Gameplay Overview ... 17

Figure 6.3: SEN0296 [7] ... 18

Figure 6.4: TCS34752 [2] ... 19

Figure 6.5: ESP32 Pinout [7] .. 20

Figure 6.6: Lithium Ion Battery [3] .. 21

Figure 6.7: E-ink display... 22

Figure 7.1: Board Model: Version 1 ... 23

Figure 7.2: Board Model: Version 2 Half Section .. 24

Figure 7.3: Board Model: Version 3 ... 26

Figure 7.4: Board Model: Version 3 Half Section .. 27

Figure 7.5: Hole Design .. 28

Figure 7.6: Hole Flow Logic ... 29

Figure 7.7: Physical Board Design ... 29

viii

Figure 8.1: I2C Multiplexer Diagram ... 31

Figure 8.2: TCA9548A Multiplexer ... 32

Figure 8.3: Multiplexer Printed Circuit Board .. 32

Figure 8.4: Pressure Sensor Voltage Divider .. 33

Figure 8.5: LED Control Circuit ... 34

Figure 8.6: Intra-Integrated Circuit Communication .. 35

Figure 8.7: ESP-NOW Protocol .. 36

Figure 9.1: Prototype Sensing Red Cornhole Bag .. 37

Figure 9.2: Pressure Sensor Values with No Bags on Board .. 38

Figure 9.3: Pressure Sensor Values with Bag Located in Quadrant 1 .. 38

Figure 9.4: Pressure Sensor Values of Bag Located Between Quadrant 1 and Quadrant 2 39

Figure 9.5: Color Sensor Values with No Bag on the Board .. 39

Figure 9.6: Color Sensor Values with Blue Bag Located in Quadrant 1 40

Figure 9.7: Color Sensor Values with Red Bag Located in Quadrant 1 41

Figure 9.8: Color Sensor Values with Red Bag Between Quadrant 1 and Quadrant 2 41

1

Cornhole Auto-Score Board

1. Introduction

Cornhole is a game played with two teams of two players. There are two boards with holes in

them and each team has 4 bags. One player from each team lineups next to each board. The team

that goes first is determined by a coin toss. From one board, one player from team A tosses a

bag. Then, one player from team B tosses a bag onto the same board until all 4 of each team’s

bags have been tossed. When all the bags have been thrown for that round, points are totaled.

The next round begins from the opposite board with the opposing partners taking turns tossing

their bags. [1]

Figure 1.1: Game Play [2]

During the upcoming of cornhole, professional leagues have been created for players that want to

play competitively. Some of these leagues are American Cornhole League (ACL), American

Cornhole Organization (ACO), and American Cornhole Association (ACA) are just a few of the

more well-known organizations.

In 2021, there were 1024 people competing in the ACL World Championship. The winner of the

tournament went home $10,000 richer.

2

Figure 1.2: ACL Championship [2]

Novice cornhole players may have complications when it comes to keeping the score of a match

with external stimuli distracting them at any given moment. Also, Professional players need a

way to accurately analyze their throws and the placement of their bags after a match to show

improvement or struggles that they are encountering. Automating the scorekeeping would

improve social interaction by limiting the disruption of conversation and mitigating confusion.

3

1.1. History

Figure 1.3: Early Cornhole Design [1]

Cornhole has many origins because no one can narrow down the invention of the backyard game.

The most common stories of the origin involve many different areas. One origin involves a

farmer from Kentucky, Jebediah Mcgillicuddy. It was said he invented the game just for him and

his friends to play on his farm and just exploded in popularity with his townspeople. It is also

rumored that cornhole stemmed from a Native American game where they would fill an animal

bladder with dried beans or corn and throw them in a hole in the ground. Another origin is that a

German man, Matthias Kuepermann, saw kids throwing rocks in groundhog holes and he wanted

to make them a gift., so he filled burlap bags with corn that the kids could throw in a wooden box

that he constructed. The most official origin is a game technically called Parlor Quoits. Heyliger

de Windt got a patent for this game and his boards very closely resemble cornhole boards. Some

people consider this to be the earliest model of modern cornhole boards (1883). [1]

4

1.2. Game Play and Scoring

Cornhole has a universal scoring system with respect to the bags. A bag on the board amounts to

1 point. A bag that goes through the hole amounts to 3 points. It also involves a cancelation

method which will consider all the bags on the board and in the hole after one round and

cumulate the number of points and award the resulting amount to the team with the most points

in that round. [2] An easy example is if team 1 has one bag on the board and team 2 also has one

bag on the board, 0 points will be awarded. Another example is if team 1 makes one bag in the

hole and team 2 has one bag on the board, 2 points will be awarded to team 1.

There are two popular “modes” of cornhole played across the globe, bust or no bust. With the

bust mode, a team must get 21 points to win. If that team exceeds 21 points, they are reset back

down to 13 or 15 points, depending on that group’s preference. No bust is where the first team to

reach a score of 21 or more wins.

1.3. Current Solutions

There are several approaches to the cornhole scorekeeping problem. These breakdown into four

categories; manual scoring, remote scoring, auto-scoring with RFID, and auto-scoring with

image recognition. The most common examples are discussed below.

1.3.1. Manual Scoring

A simple approach to on-board scoring is to use friction or magnetic markers that are moved

manually after each round as seen Figure 1.4. This system allows players to keep track of the

score between rounds. It is easy to use and requires no external power. However, this requires

players to calculate the score and remember to change the score after each round. [3]

5

Figure 1.4: Manual Cornhole Scorekeeper [4]

1.3.2. Remote Scoring

A similar method to 1.3.1 is using a remote to keep track of the score. This involves a

remote control and an LED scoreboard. After each round, a player would need to

calculate the score of each round and input that number into the remote which will then

show up on the scoreboard. Although this takes the stress of remembering the game's

score, the player still needs to understand the game's scoring rules and input the correct

score. [2]

6

Figure 1.5: LED Remote Scoring [2]

1.3.3. Auto-Scoring with RFID

Some engineers have tried using radio frequency identification to make an auto-scoring cornhole

board. This system would use special tags inside the bags. The reader on the board, or in the

hole, would then read each bag’s unique tag upon arrival to identify a scoring value.

A team of electrical/computer engineers from the University of Central Florida made one

working board as a proof of concept using ultra-high frequency radio identification (UHF RFID).

They chose the ThingMagic Nano because it included UHF functionality and paired it with a

Sparkfun Simultaneous M6E reader. They reported that this system had low power requirements,

was fast to boot up, and could read 200 taps a second. Despite their success using the UHF

7

RFID, it was a significant portion of the project budget. Unfortunately, it seems like they were

not able to make a fully functional device [4].

A California Polytechnic State University team used the same UHF setup with the ThingMagic

M6E reader. However, they chose to use a linear vertical polarized antenna to get better coverage

throughout the board. This choice came with the unintended consequence of only being able to

read the tags in a vertical orientation. They solved this by placing two tags in each bag at 90

degrees to each other to always get one to read. It is unclear what kind of long-term durability

this will have. This team came up with a clever way to attenuate the RF signal to identify when a

bag was above or below the board. They made a diamond pattern under the boar with strips of

aluminum foil to partially shield the signal. The team struggled with the Bluetooth

communication system that was chosen for the project and although they had a working system,

there was much room for improvement [4].

8

Figure 1.6: RFID Scoring [3]

1.3.4. Autoscoring with Image Recognition

A group of senior electrical engineers used a combination of a visual system and a color sensor

to detect which bags have landed on the board or in the hole. They successfully got the camera to

detect the separate bags and add both to the score. They also got the color sensor and camera to

“communicate” with each other so that when a bag goes in the hole, only the color sensor will

detect it and add it to the score. They did have some issues with the camera not being able to

read 2 separate bags of the same color if they were on top of each other as well as the color

sensor not being able to detect multiple bags going through the hole at the same time. The model

9

was only half the true size of a cornhole board. Although the group had a semi-working

prototype, there were several spots left for improving their model [5].

Figure 1.7: Image Recognition Scoring [4]

2. Objective Statement

The previous attempts either had flaws in functionality and/or aesthetics. There was also no way

for the professional player to gain much from their boards. The objective of this project is to

make a fully automated cornhole scoring system that is fully functioning, portable, has bag data

extraction, and is aesthetically pleasing.

10

3. Specific Aims

For the auto-scoring system, a vectoring of pressure sensors is going to be used to detect how

many bags are on the board and where most of that pressure and weight is distributed. This can

also be used to detect where the bag landed for the bag data that can be extracted. The vectoring

will be paired with a color sensor matrix to determine which colored bags landed on the board.

The color sensor matrix will consist of multiple squares of color sensors to identify bag color at a

certain location on the board. For the bags that go into the hole, a multi-sensor design will be

implemented to ensure that all bags in the hole will be detected and recorded.

In the time where electronic games are more popular, this design helps preserve the classic game

of cornhole with a technological appeal. It also brings people together in relax social setting.

These are important cultural and social features for the design factor considerations located in

Appendix B.

4. Requirements/Constraints/etc.

Some restrictions that the system must pertain to is the regulation size of the cornhole board. The

board is a 4’ by 2’ board with a hole near the upper part of the board. The layout can be seen in

Figure 4.1.

11

Figure 4.1: Universal Cornhole Board Dimensions [5]

The ability for the board to be stored away is also a huge concern for the average player. This

means the board would need to light enough weight to move around as well as being able to

break the board down enough to where it is a feasible job to store it away. This system should

also work off DC power. This means that the board will not have to be plugged into an AC outlet

while playing.

12

5. Code Logic

This section will go through an overview of what the boards and sensors will do with different

scenarios. Team 1 is the red bags and Team 2 is the blue bags. This first scenario (Figure 5.1) is

when Team 1 throws a bag in the middle of the board. The pressure sensors (highlighted in

orange) will sense a change in equilibrium from their initial zeroed state. Then with the values

that are generated from the pressure sensors, a general area of color sensors will be activated to

read the color of the bag in that spot. Then when the bag is at rest, Team 1 will press their

relative button on the back of the board which will then initiate the end of their turn and it will

increase the current score of Team 1 by 1.

Figure 5.1: Team 1 Bag on Board

13

This second scenario (Figure 5.2) is when Team 2 throws a bag towards the bottom of the board.

The pressure sensors will sense a change in equilibrium compared to the first bag. Then with the

values that are generated from the pressure sensors, a general area of color sensors will be

activated to read the color of the bag in that spot. Then when the bag is at rest, Team 2 will press

their relative button on the back of the board which will then initiate the end of their turn and it

will increase the current score of Team 2 by 1.

Figure 5.2: Team 2 Bag on Board

14

This third scenario (Figure 5.3) is when Team 1 throws a bag in the hole. Multiple sensors that

are in the hole will detect that a bag has fallen in the hole and will read what color it is. Team 1

will press their button and the data will be successfully read and the bag will be released. Team

1’s current score will increase by 3.

Figure 5.3: Team 1 Bag in Hole

15

This fourth scenario (Figure 5.4) is when Team 2 throws a bag, and it misses the board

completely. Team 2 will press their button and when the readings are compiled, there will be no

difference from the previous turn. This tells the board that a bag was missed and will initiate the

end of Team 2’s turn.

Figure 5.4: Team 2 Bag Misses

At the end of each round, the current score of each team will be compared to each other. If Team

1 has a higher current score than Team 2, the difference between the two teams will be given to

Team 1 and vice versa for Team 2. For example, if Team 1 scored 4 points in round 1 and Team

2 scored 1 point in round 1, Team 1 has more points. This means Team 1 would have equated to

3 points and Team 2 would have 0 points after round 1.

16

This code logic continues until a team reaches a total of 21 points, in which the rounds and

points will reset.

6. Project Design

This section goes into detail of a first idea of the cornhole board as well as all of the subsystems

that are going into the design. The subsystems are explained to the reason that they were chosen

and why they fit the system as a whole.

6.1. Design Idea

Figure 6.1: 3D Model of Design

Unlike the designs discussed previously, this design uses color sensors and pressure sensors to

determine the bad color and location on the board and in the hole. The support frame will be

made of 1”x4” wood planks, similar to a classic cornhole board. However, the top of this board

will be made of clear plastic. Color sensors will be laid out in a matrix beneath the clear top to

sense the color of the bags as shown in Figure 6.1. Pressure sensors will be mounted at each

17

corner of the top to locate the position of the bags by measuring a change in pressure to each

sensor. Color and pressure sensors will also be mounted in the hole to determine bags that have

gone through. The legs of the cornhole board will be either removeable or foldable, so that the

boards can be easily stored. The scoreboard will be at an angle so that the score can be seen

without the players straining to view the score on the side of the board.

The block diagram in Figure 6.2 helps explain the gameplay logic. The color sensors

communicate to the microcontroller (MCU) by the multiplexers and the pressure sensors

communicate through the analog digital converter (ADC). Each bag that lands on the board or in

the hole will be tracked and verified throughout the round of gameplay to identify knocking-off

or shifting of the bags. When the round is over, the Board 1 MCU will update Scoreboard 1 and

communicate the change in score to MCU 2 which will update Scoreboard 2. When round 2 is

over, sensor data is processed and score updates are sent by MCU 2 to MCU 1.

Figure 6.2: Gameplay Overview

6.2. Systems

The automated scoring cornhole system consists of a listed 5 subsystems: sensors,

microcontroller, power, scoreboard, and physical board model. Each subsystem will be explained

18

what the ideal purpose and contribution to the system. An explanation of which parts were

chosen will be provided as well as considerations of other parts.

6.2.1. Sensors

The automated cornhole scoring system will use color and pressure sensors to determine the

color of the bags as well as how many bags are on the board. The pressure sensor that was

chosen was the SEN0296. This is a thin film style pressure sensor that has a range of 20g to

10kg, the widest range of all the sensors that were considered. The resistance also quickly drops

to a linear behavior for ease of signal processing. This sensor will require signal processing. The

SEN0294 was considered, but its range is smaller. The SF15-600 is similar in operation, but it is

a long strip style that would not sense pressure directly at one corner.

Figure 6.3: SEN0296 [7]

19

Figure 6.4: TCS34752 [2]

The color sensor chosen is the TCS34725. The reason this sensor was chosen over others is

because of its I2C capabilities and no need for an analog to digital converter. However, it does

require an I2C multiplexor. The two other color sensors that were in contention are the TCS3200

and the EACLSST3227A2. The TCS3200 has 4 on board LEDs that would illuminate the board

top making the reading easier for the sensor, but it needs an analog to digital converter. The

EACLSST3227A2 needs a custom PCB made for it. It could be made, but it would take more

time as well as money to get it fabricated.

6.2.2. Microcontroller

The microcontroller chosen for the system is the ESP32. The reason this microcontroller was

chosen over the Arduino microcontrollers is because it has Wi-Fi and Bluetooth modulation

capability. It still has the ability to write in the Arduino IDE which will make it easy to get

started. The pinout of the ESP32 can be seen in Figure 6.5. This MCU has I2C pins that will

allow communication from our multiplexers.

20

Figure 6.5: ESP32 Pinout [7]

The ESP32 can also be used to create a specific web application that can act as a Human

Machine Interaction (HMI) between the customer and the cornhole boards. This addition could

propel the project to another level of complexity. This web application could act as a scoreboard

as well as a selector of the mode.

6.2.3. Power

The source of power was seen as one of two options: chargeable or rechargeable. A rechargeable

battery pack seemed like the greater option because it wouldn’t make the customer purchase

regular batteries on a regular basis to ensure their cornhole boards have power. A rechargeable

Lithium-Ion battery was chosen because it is one of the more common rechargeable batteries as

well as long-living performance. The battery pack shown in Figure 6.6 uses a battery

management system (BMS) that protects the cells from over charge, over discharge, and short

circuit. In case of a short circuit, this could prevent fire. Also, the BMS used with rechargeable

cells prolongs the life of the battery pack which results in less electronic waste. These are

important health and safety as well as environmental features for the design factor considerations

in Appendix B.

21

Figure 6.6: Lithium Ion Battery [3]

6.2.4. Scoreboard

A physical scoreboard will be included in the system. The score board is an e-ink display placed

on the back side of the cornhole board. This display was chosen due to its low power mode and

its outdoor readability. Since cornhole is mainly an outdoor game, it was preferred that these

displays could be read in natural light and not tough for the players. The display only draws

power whenever the display is updated, so if there is a delay in the game and the score isn’t

changed for a few minutes, the display would look like Figure 6.7 for those few minutes.

22

Figure 6.7: E-ink display

7. Game Board Design

The physical board was designed to be built using widely available materials so manufactures

around the globe could build them. This means that this large product can be manufactured,

assembled, and distributed locally anywhere in the world without the need for high shipping cost

that come with large items. These are important global and economic design factor

considerations located in Appendix B.

While designing the full-size board prototype, three versions were 3D modeled. Each time the

board was redesigned to meet requirements that the previous board did not fulfill. Version 3 of

the full-size prototype met all requirements, was built and assembled with all electrical

components.

7.1. Early Designs

Before the final design, there were two versions that were updated and changed to better fit the

project and give better results. Each section will explain the reason for each version, but then

give the reasons why they were changed.

23

7.1.1. Version 1

Figure 7.1: Board Model: Version 1

The first board was designed with the intent to implement pressure sensors at each corner and

color sensors in a matrix below the board surface. A clear plexiglass top was included so the

color sensors could read the bag colors. Color sensors would be mounted to the bottom of the

recessed cubes shown in Figure 7.1. The walls of the grid patterns were designed to stop light

coming in from the side from being read by the color sensor. The hole at the top was open like a

normal cornhole board so bags could pass through. Pressure sensors were in the mounts for the

feet.

24

This design had a few problems. The overall amount of wood used would make this design too

heavy. Aside from being difficult to move, the weight also was too great for the pressure sensors

that were selected. Additionally, the full height interior dividing walls did not allow for interior

wiring.

7.1.2. Version 2

Figure 7.2: Board Model: Version 2 Half Section

The second board design had some dramatic changes to solve the problems from the first design.

Figure 7.2 shows the version 2 board in a half section view to make the changes easier to see.

First, the board is now split into two major sections, a framed bottom section, and a top section

that includes the plexiglass surface and grid that is suspended above the frame leaving a small

gap. The top section grid and outer panels are made from ¼ inch plywood to decrease weight

while providing support for the plexiglass and shade the color sensors from light coming in from

the side. In the corners, mounted to the top of the frame, are two-piece, 3D printed mounts that

contain the pressure sensor between the two pieces and suspend the top above the bottom. The

hole is also a 3D printed part that is incorporated into the grid walls and suspended above the

25

bottom. Version 2 also included covers that would attach to the bottom of the grid and have a

hole in the bottom to allow the color sensor to read the surface. The covers also provided a way

to hide the wiring. The bottom section included a ¼ inch plywood panel to mount color sensors,

electronic components, and hold wiring. The outer edges were framed with 1x2 inch wooden

members to stiffen the panel and provide a strong mounting point for the feet.

Although this was a big step forward for the final design, there were some problems with this

design as well. The mounts were too high and had the potential to block light from the corners of

the board. The mounts also had no way to locate the top so that it set directly above the bottom.

Version 2 also had no way to read bags that went into the hole. The bottom frame of this version

was built to test rigidity, but the design allowed the bottom to twist too much which would have

caused the pressure sensors to not read correctly.

26

7.2. Current Board Design

Figure 7.3: Board Model: Version 3

Version 3 of the full-size prototype looks similar to Version 2, but it has some significant

changes. It still uses the two-piece, top and bottom design. First, to increase the rigidity of the

bottom, the frame members were turned 90 degrees, so the wider part of the board was

perpendicular to the bottom panel. This increased the bending moment so the frame would resist

twisting. At the corners of the bottom frame, 3D printed brackets were designed to bolt to the

frame members. These brackets were also designed with a recessed area to hold the pressure

sensors. This design lowers the height of the sensor so the mounts block as little light as possible.

The bracket recess also helps locate the top section so that it aligns uniformly on top of the

bottom section. The bottom of the pressure sensor recess is at a 10-degree angle with the board

surface so that the sensors are parallel to the ground. This ensures the entire weight of the bag is

read between all four sensors.

27

Figure 7.4: Board Model: Version 3 Half Section

The top section grid height was shortened to accommodate the taller members. The outer corners

were designed to be 3D printed to incorporate the top part of the pressure sensor mount. The 3D

printed top section hole piece was shortened to the same height as the grid to make room for a

new hole design.

28

7.3. Hole Design

Figure 7.5: Hole Design

The previous board designs, versions 1 and 2, did not have a way to detect bags that went into

the hole. However, version 3 allowed enough room to design a system to solve this problem.

This hole design has three main 3D printed parts. The top part of the hole assembly mounts to

the top of the bottom panel of the board. It has two places to mount color sensors on opposite

sides. It also has a place to mount a pressure sensor. The bottom part of the hole assembly

mounts to the bottom of the bottom panel of the board. ¼ inch bolts pass through the bottom of

the hole assembly and through the bottom panel of the board and screw into treaded holes in the

top part of the hole assembly. A hinged door is also mounted to the bottom part of the assembly.

It has a torsion spring on the hinge so the door will return to a closed position when there is no

bag on the door. The door is kept closed using a solenoid latch. The bottom of the door also has a

color sensor mount.

Multiple color sensors are needed incase more than one bag goes into the hole at one time. The

system is designed to detect when a bag goes into the hole, determine how many bags are present

29

using the pressure sensor, detect the color of the bags, and then release the bags as soon as they

are read. A detailed flow chart of this process is shown in Figure 7.6.

Figure 7.6: Hole Flow Logic

7.4. Whole Board Assembly

Figure 7.7: Physical Board Design

30

Figure 7.7 shows a picture of the assembled board with color sensors, multiplexer PCBs, and

LED strips installed. The Plexiglass top has been removed for image clarity. This image shows

the color sensors mounted in the center of each grid square. The shadows from the grid walls

demonstrates that they do block some light from the side from reaching the color sensors.

8. Communication

Communication is a vital part of the project. This can be broken up into three categories:

communication within the board, communication from the sensors to the microcontroller, and

microcontroller to microcontroller (board to board). Each form of communication uses standard

protocols developed for wireless or wired communication and each sub-section will go into

detail about how these were accomplished.

8.1. Within the Board

Communication within the board includes actions within the code of the microcontroller that

facilitate communication with each color and pressure sensor, as well as controlling backlights

and the hole latch solenoid. General purpose input output (GPIO) pins of the ESP32 are used to

turn on and off pressure sensor voltage dividers, backlights, and hole latch solenoid. Serial

31

communication pins are used to control multiplexers to communicate with color sensors

individually.

Figure 8.1: I2C Multiplexer Diagram

As mentioned in section 6.2.1, the color sensors use I2C communication to send information to

the microcontroller. This is a serial communication protocol that uses two wires. When

communicating using I2C, primary devices like microcontrollers communicate with a specific

secondary device like a color sensor by sending the secondary device’s address before issuing

commands. However, the color sensors used for this board all have the same address and cannot

be changed as shown in Figure 8.1. To communicate with an individual color sensor, a

multiplexer is used. A multiplexer allows the I2C bus to be connected to one sensor at a time.

The multiplexer used in this project is the TCA9548A shown in Figure 8.2. It has eight

individual channels to which a color sensor can be connected. It also has three address pins that

can be used to change the I2C address of each multiplexer. This is necessary because, since 35

color sensors were used, five multiplexers were needed.

32

Figure 8.2: TCA9548A Multiplexer

To communicate with color sensors within the board, there are four main wiring lines that need

to be ran through the board: positive voltage (V+). Ground (GND), data (SDA), and clock

(SCL). The function of SDA and SCL will be talked about in detail in Section 8.2. To be able to

distribute these lines effectively across a 4’x2’ board, a custom printed circuit board (PCB) was

designed. This PCB can be seen in Figure 8.3. It also shows the connection of the screw

terminals. The screw terminals following the first two pairs follow the same pattern going to the

eighth pair.

Figure 8.3: Multiplexer Printed Circuit Board

33

This PCB holds a multiplexer and 20 screw terminals. This allows each color sensor to be

addressed individually as well as being able to distribute V+ and GND across the board without

an immense amount of wire. This PCB is split into 2 main sections: color sensor connection and

distribution. The color sensor connection sections and the top and bottom section of Figure 8.3.

This allows the multiplexer to be connected to each color sensor individually. The distribution

sections are the left and right sections of Figure 8.3. This allows the four main wiring lines to be

distributed between the microcontroller and each PCB. Without the PCBs, each color sensor

would need to connect to their specific multiplexer as well as a power source to be able to

function. Figure 7.7 shows how these PCBs help diminish the amount of wire needed.

Figure 8.4: Pressure Sensor Voltage Divider

The pressure sensors act as variable resistors. They are placed into a voltage divider as shown in

Figure 8.4. Since each of the five voltage dividers draw around 20mA, the 3.3V power source

can be turned on and off as needed to reduce power consumption. The 3.3V power is provided

by a GPIO pin on the ESP32.

34

Figure 8.5: LED Control Circuit

 The LED backlights and solenoid are also controlled using GPIO pins. However, both operate

using 12V, so the 3.3V coming from the microcontroller cannot be used directly. An N-channel

MOSFET was used to turn on and off the ground side of the 12V circuit for both devices as

shown in Figure 8.5. The 3.3V signal from the ESP32 was also not a high enough voltage to

fully turn on the MOSFET, so the TC4420 MOSFET driver IC was used to amplify this signal to

12V. The circuit to control the solenoid was the same as the LED control circuit.

8.2. Sensor to Microcontroller

Color sensors and pressure sensors require separate types of communication to communicate

with the microcontroller. Since there are 35 color sensors (32 on the board and 3 in the hole),

they need to be addressed individually, as stated in section 8.1, using multiplexers and the data

and clock lines from the microcontroller. This is called Intra-Integrated Circuit communication

or I2C communication. I2C uses two wires (Serial Clock and Serial Data) in a bus configuration

as shown in Figure 8.6. To begin communication, the microcontroller will send a start bit to the

serial bus to indicate to all devices that communication is starting. Then an address is sent to

indicate with which device the microcontroller needs to communicate. Next, a single bit is sent

to indicate whether this is a read or write command. Another single bit is sent to confirm.

Information is then sent in a predetermined number of bytes and confirmed until the primary

issues a stop bit.

35

Figure 8.6: Intra-Integrated Circuit Communication

Reading the output of the pressure sensors is easier since serial communication is not involved.

An analog to digital converter (ADC) pin in is connected to the middle of the voltage divider, as

shown in Figure 8.4, to read the change in voltage across the pressure sensor. The ADC converts

the voltage reading into a 12-bit value. This is how the microcontroller determines the pressure at

each sensor.

8.3. Board to Board

It was established that wireless communication was ideal for this project. The ESP32 has a

special protocol called ESP-NOW. ESP-NOW is a communication protocol developed by

Espressif Systems, specifically for their ESP8266 and ESP32 Wi-Fi modules. It enables low-

power, peer-to-peer communication between devices without the need for a traditional Wi-Fi

network infrastructure. ESP-NOW is well-suited for IoT applications, providing a fast and

efficient way for ESP8266/ESP32 devices to exchange data directly, making it ideal for

scenarios where power consumption and quick data transmission are critical. As seen in Figure

8.7, the ESP-NOW protocol skips the top 4 layers of typical operating systems interconnections

such as home Wi-Fi. This protocol sets up a “primary-secondary” architecture similar to the I2C

communication which allows each ESP to send data to each other and use that data. The reason

to have data sent from both ESPs to each other is to communicate the score between the boards,

36

so the game can progress evenly and not have different values of the team’s score. The primary

ESP32’s communication code can be found in Appendix G and the secondary ESP32’s

communication code can be found in Appendix H. This wireless communication uses the

standards from the Federal Communication Commission section 15 as stated in Appendix B.

Figure 8.7: ESP-NOW Protocol

9. Testing

This project went through two small prototype setups before moving to a full-size prototype.

Each of the prototypes were used for different testing applications. The first small-scale

prototype was uses for testing different kinds of sensors. The second small-scale prototype was

used to test microcontrollers and communication. The large-scale prototype was used to test all

systems individually.

9.1. Prototype

The first prototype can be seen in Figure 9.1. This is a 1’x1’ box that simulates a section of a

cornhole board. The prototype uses 4 color sensors (one in each quadrant), 4 pressure sensors

37

(one in each corner), 1 multiplexer, and 1 microcontroller. The microcontroller for the first

prototype was an Arduino Mega because of the versatility of the IDE and all of the open

resources that help with building a code. The Mega also has a lot of pins available allowing for a

change in sensors if needed.

Figure 9.1: Prototype Sensing Red Cornhole Bag

For the second prototype, the Arduino Mega microcontroller was switched to an ESP32 for its

wireless communication capabilities as well as still being able to use the Arduino IDE. A second

multiplexer was also used to control two of the color sensors to test the control of the

multiplexers.

Using the small prototype, the code in Appendix F was used to gain data for both the pressure

sensors and the color sensors. Figure 9.2 showcases the digital value of the pressure sensors

when there are no bags on the board.

38

Figure 9.2: Pressure Sensor Values with No Bags on Board

Figure 9.3 showcases the digital values of when there is a bag located in Quadrant 1. All of the

values jumped up, but Quadrant 1 jumped immensely compared to the rest.

Figure 9.3: Pressure Sensor Values with Bag Located in Quadrant 1

-10

-5

0

5

10

15

20

 Q1val Q2val Q3val Q4val

D
ig

it
al

 V
al

u
e

No Bags

0

20

40

60

80

100

120

140

160

180

200

 Q1val Q2val Q3val Q4val

D
ig

it
al

 V
al

u
e

One Red Bag at Q1

39

Figure 9.4 showcases the digital values of when a bag is located in between Quadrant 1 and

Quadrant 2. Compared to Figure 9.3, the values of the are quite different.

Figure 9.4: Pressure Sensor Values of Bag Located Between Quadrant 1 and Quadrant 2

Figure 9.5 showcases digital values of the color sensors when there is no bag on the board. All of

the color values, besides blue, are at the maximum digital value.

Figure 9.5: Color Sensor Values with No Bag on the Board

0

50

100

150

200

250

300

 Q1val Q2val Q3val Q4val

D
ig

it
al

 V
al

u
e

Red bag half Q1 half Q2

0

10000

20000

30000

40000

50000

60000

70000

D
ig

it
al

 V
al

u
e

Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4

No Bags

40

Once a bag lands on the board, that is when the values start to change. Figure 9.6 showcases

digital values of the color sensors when there is a blue bag in Quadrant 1. It can be seen that all

of the values in Quadrant 1 dip, besides the clear value. It takes a conditional to be able to

identify that it is a blue bag that has been detected.

Figure 9.6: Color Sensor Values with Blue Bag Located in Quadrant 1

Figure 9.7 showcases digital values of the color sensors when there is a red bag in quadrant 1.

This figure shows similarities to the previous one, but the red value sits at a much higher value

than before. This allows the group to know that a red bag is being read.

0

10000

20000

30000

40000

50000

60000

70000

D
ig

it
al

 V
al

u
e

Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4

One Blue Bag at Q1

41

Figure 9.7: Color Sensor Values with Red Bag Located in Quadrant 1

Figure 9.8 showcases digital values of the color sensors when there is a red bag located in

between quadrant 1 and quadrant 2. Both Quadrant 1 and Quadrant 2 have a change in digital

value. Similarly, to Figure 9.7, the red values sit much higher than the rest of the values in their

specific quadrant.

Figure 9.8: Color Sensor Values with Red Bag Between Quadrant 1 and Quadrant 2

0

10000

20000

30000

40000

50000

60000

70000

D
ig

it
al

 V
al

u
e

Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4

One Red Bag at Q1

0

10000

20000

30000

40000

50000

60000

70000

D
ig

it
al

 V
al

u
e

Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4

Red bag half Q1 half Q2

42

These results furthered the group’s confidence in the project because these values were able to be

separated and displayed. It also helped prove the concept of the project as a whole.

9.2. Testing Plan

After testing the prototype and getting successful reading from both sensors, expansion into the

full-sized board was the next area to go. The first electrical test is being able to get all the

components to run off a singular DC power supply. This leads to testing each quadrant of

sensors, which consists of eight color sensors connected to one PCB and one pressure sensor.

This test will consist of similar tests that were ran on the prototype to receive similar results.

Some individual tests that were tested are the ability to control both the backlighting and the

solenoid. The backlighting needs to be controlled by a pulse-width modulation to allow it to

brighten and dim depending on the brightness of the surrounding area. The solenoid needs to be

controlled by an electrical signal from a specific GPIO pin, so that when a bag lands in the hole,

the solenoid will retract and drop the bag through based on whether that GPIO pin is high or low.

Apon assembly for the board components, each component system was tested using the code

found in Appendix J through Appendix Q.

After the components can be controlled and have power delivered to them, the code is then

verified. The code consists of an expanded version of the prototype code, the gameplay code, and

the communication code. The prototype code consists of pressure sensor and color sensor

readings. The gameplay code uses the readings from the previous code to determine when either

team scores or not. The communication code then takes each team's final score of each round and

communicates to the other ESP32 and updates that score.

10. Results

Applying the test plan stated in section 9.2, there were experiences of accomplishments as well

as some areas that didn’t fully show what was trying to be shown. Section 10.1 shows the

accomplishments that the group experienced, and section 10.2 shows some of the problems that

were faced.

43

10.1. Accomplishments

This project did face some issues, but there was also a great deal of accomplishments. The first

of them is being able to prove the concept of the project using the prototype. The prototype

allowed us to show the values received from the color sensors and pressure sensors as shown in

Figure 9.2 through 9.8. Since this project was started from scratch, the entire design process was

needed. From thinking of an idea to designing it, then building it and testing it. It allowed the

group members to experience a full process of what the real world could hold. The adjustable

backlighting control was achieved. A PWM signal was sent to each LED strip and was

brightened and dimmed. Figure 10.1 shows the full-sized board with its LED strips lit up.

Figure 10.1: Full-Sized Board with LEDs

The group was also able to control the solenoid with a high or low value being sent to it from a

GPIO pin. Whenever the solenoid specific GPIO pin was high it would activate the solenoid to

retract which released the trap door of the hole and would let the bag drop. Wireless

communication was also a big accomplishment of this project. One ESP32 was established as the

“primary”, and another was established as the “secondary”. The primary ESP32 was able to

44

send changing data to the secondary ESP32. The data was then displayed using the serial monitor

in the Arduino IDE.

A huge part of this project is to be able to control the game and keep the score correctly and the

group was able to verify their gameplay logic using artificial numbers. These artificial values

were used because values could not be found from the sensors on the full-sized board. This will

be explained in more detail in section 10.2. Score values were plugged into the code to increase

the score of both teams, but team 1 would increase faster. The code was able to track both team’s

score through a singular round, cancel out the scores, and hold those values to the remainder of

the game until there was a winner.

10.2. Problems Faced

Even though there were many accomplishments from this project, there were three main

problems that the group ran into. The first is that the color sensors did not respond when they

were trying to be located. This didn’t allow the group to test the color sensors on the full-sized

board. The second problem was similar to the first, but it involves the pressure sensors. They

either gave values of 0 or the full 12-bit value of 4095, this 12-bit value was the analog

resolution in the code. This caused the issue of not being able to identify a bag has hit the board

let alone located it. The last problem that was identified was that the solenoid was not powerful

enough to open the trap door whenever there was a bag resting on it.

11. What Could be Changed?

There are some recommendations that the group believes could fix the problems that were

experienced. The reason that the color sensors had issues responding was because there was an

immense amount of capacitance along the I2C bus. Since this value of the output was too high,

the threshold for the secondary devices won’t be reached. This means that they will not

recognize the signal at all. [11] The next step would be to try and find a way to reduce this

capacitance to be able to have all the color sensors respond.

45

Another recommendation is to use an op-amp on the pressure sensors to amplify the response.

This should allow the values of the pressure sensors to be read. A stronger solenoid should fix

the problem of not being able to retract and open the trap door.

The group would also recommend trying another approach if possible. The one approach that

would seem to solve issue of this project as well as the previous ones would be to use RFID

chips with the optimized pressure sensors. This would allow the bags to be identified and it will

also not misidentify bags that missed the board and count them as if they are on the board by

having the pressure sensors sense a change in equilibrium.

12. Project Planning

A project such as this, especially starting from scratch, needs to be well planned out. Sections

12.1 and 12.2 will show the bill of materials and the timeline of the project respectfully.

12.1. Bill of Materials

The bill of materials (Table 12.1) is a table that lists out the parts and components that will go

into the physical design of the cornhole board. The main components of our system are listed in

the system's subsections. The board plans to have 32 color sensors which is roughly 11 units of a

3-pack bundle of color sensors. Four pressure sensors are used, one in each corner. One e-ink

display as the physical scoreboard. Two battery packs will be used to power all the systems. One

microcontroller will be used to have all the components communicate with each other. Extra

LED strips will be used to provide more light intensity for the color sensors to give a consistent

reading of whichever color they see.

Table 12.1: Bill of Materials

Item Qty Unit Cost Cost Description

1 12 $12.88 $154.56

3 pack Color

Sensors

2 5 $7.90 $39.50 Pressure Sensor

3 2 $34.99 $69.98 E-ink Display

46

4 1 $18.95 $18.95 Battery Pack

5 1 $17.99 $17.99 Microcontroller

6 5 $7.92 $39.60 16' LED Strips

7 1 $36.23 $36.23 Plexiglass Cover

8 1 $12.79 $12.79

10 pack

Multiplexers

9 3 $1.49 $4.47 Op-Amp

10 1 $3.93 $3.93

Differential

Amplifier

11 1 $13.00 $13.00 1/4'' Plywood

12 2 $3.00 $6.00 1x2

13 1 $3.00 $3.00 2x4

14 1 $8.49 $8.49 Solenoid

15 5 $1.75 $8.75

Printed Circuit

Board

16 100 $0.70 $70.00

Screw-in

Terminals

17 1 $18.00 $18.00 3D Filament

18 1 $8.99 $8.99

Buck Boost

Converter

19 1 $6.49 $6.49 JST Connectors

20 2 $16.99 $33.98 Ribbon Cable

21 1 $24.99 $24.99

Ferrule

Connectors

Total $574.70

47

12.2. Timeline

The specific tasks can be seen in Appendix A. The table shows when those specific tasks were

completed. Even in this short amount of time, the group was able to get a good amount of

progress done on their project.

13. Conclusion

This idea of a project is to allow players to play the game of cornhole leisurely and not have to

worry about the score. It would also allow professional/competitive players to withdraw their

data and analyze their performance. This design offers accurate, automated scoring and data with

a board and bags that are regulation size and weight. Although an expansion from the prototype

did not yield the results that were expected, it was still a valuable start to a project. Not a lot of

time was left for implementation and testing the full-sized board due to constructing the physical

board as well as distributing the power. This project was still a great, on-hand experience with a

lot of learning. This report has the honest results of the testing and prototypes which follows the

Code of Ethics for Engineers provided by the National Society of Professional Engineers

(NSPE).

48

References

[1] 07 May 2021. [Online]. Available: https://cornholecanvas.com/blogs/cornhole-life/history-of-

cornhole-test-

2#:~:text=In%201883%2C%20Heyliger%20de%20Windt,with%20a%20hole%20in%20it..

[2] ACL, "ACL," [Online]. Available:

https://www.google.com/imgres?imgurl=https%3A%2F%2Fapp.iplayacl.com%2Fassets%2Fi

cons%2Ficon-

512x512.png&imgrefurl=https%3A%2F%2Fapp.iplayacl.com%2F&tbnid=eRir5mk8RsH8A

M&vet=12ahUKEwjzuMXP2bv9AhUG58kDHYgBDTUQMygDegUIARCSAg..i&docid=9

RYhcV7TD-aEUM&w=512&h=5. [Accessed 3 2023].

[3] "Amazon," [Online]. Available: http://www.amazon.com.

[4] F. D. A. L. N. P. Diovanni Lara, "Smart Cornhole," 2017. [Online]. Available:

https://www.ece.ucf.edu/seniordesign/sp2017su2017/g10/files/Group%2010%20SD1%20Fin

al%20120%20Pages%20Smart%20Cornhole.pdf. [Accessed 2023].

[5] M. B. D. H. Harrison Overturf, "Automatic Score Tracking Cornhole Game," 2020. [Online].

Available:

https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1521&context=eesp.

[Accessed 2023].

[6] Fantastic Offense, "Dimensions.com," [Online]. Available:

https://www.dimensions.com/element/cornhole-bean-bag-toss-boards-platforms. [Accessed

April 2023].

[7] "Digikey," [Online]. Available: http://www.digikey.com.

49

[8] "Upesy," 18 08 2022. [Online]. Available: https://www.upesy.com/blogs/tutorials/esp32-

pinout-reference-gpio-pins-ultimate-guide.

[9] Tosso.com, "How to play cornhole," [Online]. Available:

https://www.tosso.com/blogs/news/how-to-play-cornhole. [Accessed March 2023].

[10] Espressif Systems, "Wireless MCUs and AIoT Solutions," [Online]. Available:

https://www.espressif.com. [Accessed 9 2023].

[11] K. E. Clothier, "What is Bus capacitance in I2C? How it limits number of devices can be

connected to the bus?," Electrical Engineering Stack Exchange, 2020. [Online]. Available:

https://electronics.stackexchange.com/questions/494718/what-is-bus-capacitance-in-i2c-how-

it-limits-number-of-devices-can-be-

connected#:~:text=As%20the%20capacitance%20on%20the,in%20time%20to%20be%20reg

istered.. [Accessed 1 12 2023].

50

Appendix A: Project Timeline

Task Finish Date

Prototype Color Sensor Reading 7/30/2023

Prototype Pressure Sensor Calibration 7/30/2023

Full Board Design 9/15/2023

PCB Fabricated 9/27/2023

Version 2 Physical Model Built 10/1/2023

Communication Code 10/13/2023

Version 3 Physical Model Built 10/15/2023

Faculty Presentation 11/7/2023

Gameplay Code 11/15/2023

Implementation and Wiring Complete 11/22/2023

Component Testing 11/30/2023

Testing and Troubleshooting 11/30/2023

Project Presentation 12/1/2023

51

Appendix B: ABET Outcome 2, Design Factor Considerations

ABET Outcome 2 states "An ability to apply engineering design to produce solutions that meet

specified needs with consideration of public health safety, and welfare, as well as global,

cultural, social, environmental, and economic factors."

ABET also requires that design projects reference appropriate professional standards, such as

IEEE, ATSM, etc.

Design Factor Page number, or reason not applicable

Public health safety, and welfare Page 20

Global Page 22

Cultural Page 10

Social Page 10

Environmental Page 20

Economic Page 22

Ethical & Professional Page 47

Reference for Standards
NSPE Code of Ethics, Title 47 Federal Communications

Commission: Section 15, IEEE 802.11-2012

52

Appendix C: TCS3472 Datasheet

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

Appendix D: SEN0296 Datasheet

80

81

82

83

84

Appendix E: ESP32 Datasheet

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

Appendix F: E-Ink Display Datasheet

SPECIFICATION

Product Type : EPD Model Number : H3DSHU

Description : Screen Size: 4.2"

 Color: Black and White

 Display Resolution: 400*300

'DWH : 2017.03.01

:aYHVKDU(OHFWURQLFV

10F, International Science & Technology Building, Fuhong Rd,

Futian District, Shenzhen, China Website: www.ZDYHVKDUH.com

Revision History

Rev. Issued Date Revised Contents

1.0 May.05.2015 Preliminary

1.1. Jul.27.2015
1. In part note 9-2: Modify each update interval time should be minimum at 150

seconds to 180 seconds.

113

1.2 Aug.21.2015
In part 8: Modify typical operating sequence.

In part 12: Delete block diagram.

1.3 Nov.03.2015 1. In part 6: Delete command 70h.

1.4 Nov.11.2015 1. In part 4: Modify the mechanical drawing of EPD module.

2.0 Mar.01.2017 1. In part 7-5): Modify Reference Circuit.

2／45

TECHNICAL SPECIFICATION

CONTENTS

NO. ITEM PAGE

- Cover 1

- Revision History 2

- Contents 3

1 Application 4

2 Features 4

3 Mechanical Specifications 4

4 Mechanical Drawing of EPD module 5

5 Input/Output Terminals 6

114

6 Command Table 8

7 Electrical Characteristics 27

8 Typical Operating Sequence 35

9 Optical Characteristics 39

10 Handling, Safety and Environment Requirements 41

11 Reliability test 42

12 Point and line standard 44

13 Packing 45

1. Over View

The display is a TFT active matrix electrophoretic display, with interface and a reference system

design. The 4.2” active area contains 400×300 pixels, and has 1-bit white/black full display

capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control

logic, oscillator, DC-DC, SRAM, LUT, VCOM, and border are supplied with each panel.

2. Features

High contrast

High reflectance

Ultra wide viewing angle

Ultra low power consumption

Pure reflective mode

Bi-stable

Commercial temperature range

115

Landscape, portrait mode

Antiglare hard-coated front-surface

Low current deep sleep mode

On chip display RAM

Waveform stored in On-chip OTP

Serial peripheral interface available

On-chip oscillator

On-chip booster and regulator control for generating VCOM, Gate and source driving voltage

I2C Signal Master Interface to read external temperature sensor

Available in COG package IC thickness 300um

3. Mechanical Specifications

Parameter Specifications Unit Remark

Screen Size 4.2 Inch

Display Resolution 400(H)×300(V) Pixel Dpi: 120

Active Area 84.8(H)×63.6 (V) mm

Pixel Pitch 0.212×0.212 mm

Pixel

Configuration

Square

Outline Dimension 91.0(H)×77.0(V) ×1.18(D) mm

Weight 13.76±0.5 g

116

4／45

4. Mechanical Drawing of EPD module

117

4.2 " e-Paper

5. Input/Output Terminals

5-1) Pin out List

Pin # Type Single Description Remark

1

NC
No connection and do not connect with other

NC pins
Keep Open

2 O GDR N-Channel MOSFET Gate Drive Control

3 O RESE Current Sense Input for the Control Loop

4 C VGL Negative Gate driving voltage

5 C VGH Positive Gate driving voltage

6 O TSCL
I2C Interface to digital temperature sensor

Clock pin

7 I/O TSDA
I2C Interface to digital temperature sensor Date

pin

8 I BS1 Bus selection pin Note 5-5

9 O BUSY Busy state output pin Note 5-4

10 I RES # Reset Note 5-3

11 I D/C # Data /Command control pin Note 5-2

12 I CS # Chip Select input pin Note 5-1

13 I/O D0 serial clock pin (SPI)

14 I/O D1 serial data pin (SPI)

15 I VDDIO Power for interface logic pins

4.2 " e-Paper

16 I VCI Power Supply pin for the chip

17 VSS Ground

18 C VDD Core logic power pin

19 C VPP Power Supply for OTP Programming

20 C VSH Positive Source driving voltage

21 C PREVGH Power Supply pin for VGH and VSH

22 C VSL Negative Source driving voltage

23 C PREVGL Power Supply pin for VCOM, VGL and VSL

24 C VCOM VCOM driving voltage

Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for

MCU communication only when CS# is pulled Low.

Note 5-2: This pin (D/C#) is Data/Command control pin connecting to the MCU. When the pin is

pulled HIGH, the data will be

interpreted as data. When the pin is pulled Low, the data will be interpreted as command.

Note 5-3: This pin (RES#) is reset signal input. The Reset is active Low.

Note 5-4: This pin (BUSY) is Busy state output pin. When Busy is low, the operation of chip

should not be interrupted and any

commands should not be issued to the module. The driver IC will put Busy pin low when the

driver IC is working such as:

Outputting display waveform; or

Programming with OTP

Communicating with digital temperature sensor

Note 5-5: This pin (BS1) is for 3-line SPI or 4-line SPI selection. When it is “Low”, 4-line SPI is

selected. When it is “High”, 3-line SPI (9 bits SPI) is selected. Please refer to below Table.

4.2 " e-Paper

Table: Bus interface selection

BS1 MPU Interface

L 4-lines serial peripheral interface (SPI)

H 3-lines serial peripheral interface (SPI) – 9

bits SPI

4.2 " e-Paper

6. Command Table

W/R: 0: Write cycle 1: Read cycle C/D: 0: Command 1: Data D7~D0: -: Don’t care #: Valid

Data

Command W/R C/D D7 D6 D5 D4 D3 D2 D1 D0 Registers Default

1
Panel Setting

(PSR)

0 0 0 0 0 0 0 0 0 0 00h

0 1 # # # # # # # #
RES[1:0],REG,KW/R,UD,

SHL,SHD_N,RST_N
0Fh

2
Power Setting

(PWR)

0 0 0 0 0 0 0 0 0 1 01h

0 1 - - - - - - # # VDS_EN,VDG_EN 03h

0 1 - - - - - # # # VCOM_HV,VGHL_LV[1:0] 00h

0 1 - - # # # # # # VDH[5:0] 26h

0 1 - - # # # # # # VDL[5:0] 26h

0 1 - - # # # # # # VDHR[5:0] 03h

3 Power

OFF(POF)

0 0 0 0 0 0 0 0 1 0 02h

4

Power OFF

Sequence

Setting(PFS)

0 0 0 0 0 0 0 0 1 1 03h

0 1 - - # # - - - - T_VDS_OF 00h

5 Power

ON(PON)

0 0 0 0 0 0 0 1 0 0 04h

4.2 " e-Paper

6
Power ON

Measure(PMES)
0 0 0 0 0 0 0 1 0 1

05h

7

Booster

 Soft

Start(BTST)

0 0 0 0 0 0 0 1 1 0 06h

0 1 # # # # # # # # BT_PHA[7:0] 17h

0 1 # # # # # # # # BT_PHB[7:0] 17h

0 1 - - # # # # # # BT_PHC[5:0] 17h

8 Deep Sleep

0 0 0 0 0 0 0 1 1 1 07h

0 1 1 0 1 0 0 1 0 1 Check code A5h

9

Display

 Start

Transmission

1(DTM1,

white/black

 Data) (x-

byte command)

0 0 0 0 0 1 0 0 0 0 B/W Pixel Data (400×300) 10h

0 1 # # # # # # # # KPXL[1:8] 00h

0 1 …

0 1 # # # # # # # # KPXL[n-1:n] 00h

10 Data Stop

0 0 0 0 0 1 0 0 0 1 11h

1 1 # - - - - - - - 00h

11
Display

Refresh(DRF)
0 0 0 0 0 1 0 0 1 0

12h

12

VCOM

LUT(LUTC)
0 0 0 0 1 0 0 0 0 0

20h

4.2 " e-Paper

(45-byte

command,

structure of

bytes

2~7 repeated)

Command W/R C/D D7 D6 D5 D4 D3 D2 D1 D0 Registers Default

13

W2W LUT

(LUTWW)

(43-byte command,

structure of

 bytes 2~7

repeated 7 times)

0 0 0 0 1 0 0 0 0 1

21h

14

 B2W LUT

 (LUTBW /

LUTR)

(43-byte command,

structure of

 bytes 2~7

repeated 7 times)

0 0 0 0 1 0 0 0 1 0

22h

15

 W2B LUT

 (LUTWB /

LUTW)

0 0 0 0 1 0 0 0 1 1

23h

4.2 " e-Paper

(43-byte command,

structure of

 bytes 2~7

repeated 7 times)

16

 B2B LUT

 (LUTBB /

LUTB)

(43-byte command,

sturcture of

 bytes 2~7

repeated 7 times)

0 0 0 0 1 0 0 1 0 0

24h

17
PLL

control(PLL)

 0 0 0 0 1 1 0 0 0 0 30h

0 1 - - # # # # # # M[2:0],N[2:0] 3Ch

18

Temperature

Calibration

(TSC)

Sensor 0 0 0 1 0 0 0 0 0 0 40h

1 1 # # # # # # # # LM[10:3]/TSR[7:0] 00h

1 1 # # # - - - - - LM[2:0]/- 00h

19

Temperature

Selection

(TSE)

Sensor 0 0 0 1 0 0 0 0 0 1 41h

0 1 # - - - # # # # TSE,TO[3:0] 00h

20
Temperature

Write(TSW)

Sensor 0 0 0 1 0 0 0 0 1 0 42h

0 1 # # # # # # # # WATTR[7:0] 00h

4.2 " e-Paper

0 1 # # # # # # # # WMSB[7:0] 00h

0 1 # # # # # # # # WLSB[7:0] 00h

21

Temperature

Sensor

(TSR)

 Read 0 0 0 1 0 0 0 0 1 1 43h

1 1 # # # # # # # # RMSB[7:0] 00h

1 1 # # # # # # # # RLSB[7:0] 00h

22
Vcom and data

interval setting(CDI)

0 0 0 1 0 1 0 0 0 0 50h

0 1 # # # # # # # #
VBD[1:0],DDX[1:0],

CDI[3:0]
D7h

Command W/R C/D D7 D6 D5 D4 D3 D2 D1 D0 Registers Default

23

 Lower

 Power

Detection

(LPD)

0 0 0 1 0 1 0 0 0 1 51h

1 1 - - - - - - - # LPD 01h

24

TCON

setting

(TCON)

0 0 0 1 1 0 0 0 0 0 60h

0 1 # # # # # # # # S2G[3:0],G2S[3:0] 22h

25

Resolution

setting

(TRES)

0 0 0 1 1 0 0 0 0 1 61h

 - - - - - - - #

HRES[8:3]

00h

0 1 # # # # # 0 0 0 00h

4.2 " e-Paper

0 1 - - - - - - - #

VRES[8:0]

00h

 0 1 # # # # # # # # 00h

26

GSST Setting

(GSST)

0 0 0 1 1 0 0 1 0 1 65h

0 1 - - - - - - - #

HST[8:3]

00h

0 1 # # # # # 0 0 0 00h

0 1 - - - - - - - #

VST[8:0]

00h

 0 1 # # # # # # # # 00h

27

 Get

 Status

(FLG)

0 0 0 1 1 1 0 0 0 1 71h

1 1 - # # # # # # #
PTL_FLAG,I2C_BUSY,DATA

_FLAG,PON,POF,BUSY
02h

28

Auto

Measurement

Vcom

0 0 1 0 0 0 0 0 0 0 80h

0 1 - - # # # # # #
AMVT[1:0],XON,AMVS,

AMV,AMVE
10h

29

 Read

 Vcom

Value(VV)

0 0 1 0 0 0 0 0 0 1 81h

1 1 - - # # # # # # VV[5:0] 00h

30

VCM_DC

Setting

(VDCS)

0 0 1 0 0 0 0 0 1 0 82h

0 1 - - # # # # # # VDCS[5:0] 00h

4.2 " e-Paper

31

Partial

Window

(PTL)

0 0 1 0 0 1 0 0 0 0 90h

0 1 - - - - - - - #

HRST[8:3]

00h

0 1 # # # # # 0 0 0 00h

0 1 - - - - - - - #

HRED[8:3]

00h

0 1 # # # # # 1 1 1 07h

0 1 - - - - - - - #

VRST[8:0]

00h

 0 1 # # # # # # # # 00h

0 1 - - - - - - - #

VRED[8:0]

00h

 0 1 # # # # # # # # 00h

0 1 - - - - - - - # PT_SCAN 01h

Command W/R C/D D7 D6 D5 D4 D3 D2 D1 D0 Registers Default

32

 Partial

 In

(PTIN)

0 0 1 0 0 1 0 0 0 1

91h

33

 Partial

 Out

(PTOUT)

0 0 1 0 0 1 0 0 1 0

92h

4.2 " e-Paper

34

Program

Mode (PGM)

0 0 1 0 1 0 0 0 0 0 A0h

0 1 1 0 1 0 0 1 0 1 Check code = A5h A5h

35

Active

Progrmming

(APG)

0 0 1 0 1 0 0 0 0 1

A1h

36

 Read

 OTP

(ROTP)

0 0 1 0 1 0 0 0 1 0 A2h

1 1 - - - - - - - - Read Dummy N/A

1 1 # # # # # # # # Data of Address = 000h N/A

1 1 N/A

1 1 # # # # # # # # Data of address = n N/A

37

Power Saving

(PWS)

0 0 1 1 1 0 0 0 1 1 E3h

0 1 # # # # # # # # VCOM_W[3:0],SD_W[3:0] 00h

4.2 " e-Paper

(1) Panel Setting (PSR) (Register: R00H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

Setting

the

panel

0 0 0 0 0 0 0 0 0 0

0 1 RES1 RES0 REG_EN BWR UD SHL SHD_N RST_N

RES[1:0]: Display Resolution setting (source x gate)

00b: 400x300 (Default) Active source channels: S0 ~ S399. Active gate channels: G0 ~ G299.

01b: 320x300 Active source channels: S0 ~ S319. Active gate

channels: G0 ~ G299.

10b: 320x240 Active source channels: S0 ~ S319. Active gate

channels: G0 ~ G239.

11b: 200x300 Active source channels: S0 ~ S199. Active gate

channels: G0 ~ G299.

REG_EN: LUT selection

0: LUT from OTP. (Default) 1: LUT from register. BWR: Black / White / Red

0: Pixel with B/W/Red. (Default) 1: Pixel with B/W.

UD: Gate Scan Direction

 0: Scan down. First line to last line: Gn-1 → Gn-2 → Gn-3 → … → G0

1: Scan up. (default) First line to last line: G0 → G1 → G2 → … → Gn-1

SHL: Source Shift direction

 0: Shift left First data to last data: Sn-1 → Sn-2 → Sn-3 → … → S0

1: Shift right. (default) First data to last data: S0 → S1 → S2 → … → Sn-1 SHD_N: Booster

Switch

0: Booster OFF, register data are kept, and SEG/BG/VCOM are kept 0V or floating.

4.2 " e-Paper

1: Booster ON (Default)

When SHD_N become LOW, charge pump will be turned OFF, register and SRAM data will keep

until VDD OFF, and SD output and VCOM will remain previous condition. SHD_N may have two

conditions: 0v or floating.

RST_N: Soft Reset

1: No effect (Default). Booster OFF, Register data are set to their default values, and

SEG/BG/VCOM: 0V When RST_N become LOW, the driver will be reset, all registers will be

reset to their default value. All driver functions will be disabled. SD output and VCOM will base

on previous condition. It may have two conditions: 0v or floating.

(2) Power Setting (PWR) (R01H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

Selecting

Internal/External

Power

0 0 0 0 0 0 0 0 0 1

0 1 - - - - - - VDS_EN VDG_EN

0 1 - - - - - VCOM_HV VGHL_LV[1:0]

0 1 - - VDH[5:0]

0 1 - - VDL[5:0]

0 1 - - VDHR[5:0]

VDS_EN: Source power selection

0: External source power from VDH/VDL pins

1: Internal DC/DC function for generating VDH/VDL

VDG_EN: Gate power selection

0: External gate power from VGH/VGL pins

1: Internal DC/DC function for generating VGH/VGL

4.2 " e-Paper

VCOM_HV: VCOM Voltage Level

0: VCOMH=VDH+VCOMDC, VCOML=VDL+VCOMDC

1: VCOML=VGH, VCOML=VGL

VGHL_LV[1:0]: VGH / VGL Voltage Level selection.

VGHL_LV VGHL voltage level

00(Default) VGH=16V,VGL= -16V

01 VGH=15V,VGL= -15V

10 VGH=14V,VGL= -14V

11 VGH=13V,VGL= -13V

VDH[5:0]: Internal VDH power selection for B/W pixel.(Default value: 100110b)

VDH VDH_V VDH VDH_V

000000 2.4V … …

000001 2.6V 100110 10.0V

000010 2.8V 100111 10.2V

000011 3.0V 101000 10.4V

000100 3.2V 101001 10.6V

000101 3.4V 101010 10.8V

000110 3.6V 101011 11.0V

4.2 " e-Paper

000111 3.8V (others) 11.0V

VDL[5:0]: Internal VDL power selection for B/W pixel. (Default value: 100110b)

VDL VDL_V VDL VDL_V

000000 -2.4V … …

000001 -2.6V 100110 -10.0V

000010 -2.8V 100111 -10.2V

000011 -3.0V 101000 -10.4V

000100 -3.2V 101001 -10.6V

000101 -3.4V 101010 -10.8V

000110 -3.6V 101011 -11.0V

000111 -3.8V (others) -11.0V

VDHR[5:0]: Internal VDHR power selection for Red pixel. (Default value: 000011b)

VDHR VDHR

_V

VDHR VDHR

_V

000000 2.4V … …

000001 2.6V 100110 10.0V

000010 2.8V 100111 10.2V

000011 3.0V 101000 10.4V

4.2 " e-Paper

000100 3.2V 101001 10.6V

000101 3.4V 101010 10.8V

000110 3.6V 101011 11.0V

000111 3.8V (others) 11.0V

Power OFF (PWR) (R02H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

Turning OFF the

power

0 0 0 0 0 0 0 0 1 0

After the Power Off command, the driver will power off following the Power Off Sequence. This

command will turn off charge pump, T-con, source driver, gate driver, VCOM, and temperature

sensor, but register data will be kept until VDD becomes OFF.

Source Driver output and Vcom will remain as previous condition, which may have 2 condition:

0V or floating.

Power off sequence setting (PFS) (R03H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

Setting Power OFF

sequence

0 0 0 0 0 0 0 0 1 1

0 1 - - T_VDS_OFF[1:0] - - - -

T_VDS_OFF[1:0]: Power OFF Sequence of VDH and VDL.

 00b: 1frame (Default) 01b: 2 frames 10b: 3frames 11b:4 frame

Power ON (PON) (R04H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

4.2 " e-Paper

Turning ON the

Power

0 0 0 0 0 0 0 1 0 0

After the Power ON command, the driver will be powered ON following the Power ON Sequence.

Refer to the Power ON Sequence section. In the sequence, temperature sensor will be activated for

one time sensing before enabling booster.

Power ON Measure (PMES) (R05H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

 0 0 0 0 0 0 0 1 0 1

This command enables the internal bandgap, which will be cleared by the next POF.

Booster Soft Start (BTST) (R06H)

Action
W/

R

C/

D
D7 D6 D5 D4 D3 D2 D1 D0

Starting

data

transmissio

n

0 0 0 0 0 0 0 1 1 0

0 1
BT_PHA

7

BT_PHA

6

BT_PHA

5

BT_PHA

4

BT_PHA

3

BT_PHA

2

BT_PHA

1

BT_PHA

0

0 1
BT_PHB

7

BT_PHB

6

BT_PHB

5

BT_PHB

4

BT_PHB

3

BT_PHB

2

BT_PHB

1

BT_PHB

0

0 1 - -
BT_PHC

5

BT_PHC

4

BT_PHC

3

BT_PHC

2

BT_PHC

1

BT_PHC

0

BTPHA[7:6]: Soft start period of phase A.

4.2 " e-Paper

00b: 10mS 01b: 20mS

BTPHA[5:3]: Driving strength of phase

A

10b: 30mS 11b:

40mS

 000b: strength 1 001b: strength 2 010b: strength 3 011b: strength 4

100b: strength 5 101b: strength 6 110b: strength 7 111b: strength 8 (strongest)

BTPHA[2:0]: Minimum OFF time setting of GDR in phase B

 000b: 0.27uS 001b: 0.34uS 010b: 0.40uS 011b: 0.54uS

 100b: 0.80uS 101b: 1.54uS 110b: 3.34uS 111b: 6.58uS

BTPHB[7:6]: Soft start period of phase B.

 00b: 10mS 01b: 20mS 10b: 30mS 11b: 40mS

BTPHB[5:3]: Driving strength of phase B

 000b: strength 1 001b: strength 2 010b:

strength 3

011b: strength 4

 100b: strength 5 101b: strength 6 110b:

strength 7

BTPHB[2:0]: Minimum OFF time setting of GDR in phase B

111b: strength 8

(strongest)

 000b: 0.27uS 001b: 0.34uS 010b: 0.40uS 011b: 0.54uS

 100b: 0.80uS 101b: 1.54uS 110b: 3.34uS

BTPHC[5:3]: Driving strength of phase C

111b: 6.58uS

 000b: strength 1 001b: strength 2 010b:

strength 3

011b: strength 4

 100b: strength 5 101b: strength 6 110b:

strength 7

BTPHC[2:0]: Minimum OFF time setting of GDR in phase C

111b: strength 8

(strongest)

4.2 " e-Paper

 000b: 0.27uS 001b: 0.34uS 010b: 0.40uS 011b: 0.54uS

 100b: 0.80uS 101b: 1.54uS 110b: 3.34uS 111b: 6.58uS

Deep Sleep (DSLP) (R07H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

Deep

Sleep

0 0 0 0 0 0 0 1 1 1

0 1 1 0 1 0 0 1 0 1

After this command is transmitted, the chip would enter the deep-sleep mode to save power.

The deep sleep mode would return to standby by hardware reset.

The only one parameter is a check code, the command would be executed if check code = 0xA5.

Data Start Transmission 1 (DTM1) (R10H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

Starting

 data

transmission

0 0 0 0 0 1 0 0 0 0

0 1 Pixel1 Pixel2 Pixel3 Pixel4 Pixel5 Pixel6 Pixel7 Pixel8

0 1

0 1 Pixel(n-

7)

Pixel(n-

6)

Pixel(n-

5)

Pixel(n-

4)

Pixel(n-

3)

Pixel(n-

2)

Pixel(n-

1)

Pixel(n)

This command starts transmitting data and write them into SRAM. To complete data transmission,

command DSP (Data transmission Stop) must be issued. Then the chip will start to send

data/VCOM for panel.

In B/W mode, this command writes “OLD” data to SRAM.

In B/W/Red mode, this command writes “B/W” data to SRAM.

4.2 " e-Paper

In Program mode, this command writes “OTP” data to SRAM for programming.

Data Stop (DSP) (R11H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

Stopping

data

transmission

0 0 0 0 0 1 0 0 0 1

1 1 Data_flag - - - - - - -

To stop data transmission, this command must be issued to check the data_flag.

Data_flag: Data flag of receiving user data.

0: Driver didn’t receive all the data.

1: Driver has already received all the one-frame data (DTM1 and DTM2).

After “Data Start” (R10h) or “Data Stop” (R11h) commands and when data_flag=1, the refreshing

of panel starts and BUSY signal will become “0”.

Display Refresh (DRF) (R12H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

Refreshing the

display

0 0 0 0 0 1 0 0 1 0

While user sent this command, driver will refresh display (data/VCOM) according to SRAM data

and LUT.

After Display Refresh command, BUSY signal will become “0” and the refreshing of panel starts.

VCOM LUT (LUTC) (R20H)

This command builds Look-up Table for VCOM

W2W LUT (LUTWW) (R21H)

This command builds Look-up Table for White-to-White.

B2W LUT (LUTBW/LUTR) (R22H)

4.2 " e-Paper

This command builds Look-up Table for Black-to-White.

W2B LUT (LUTWB/LUTW) (R23H)

This command builds Look-up Table for White - to- Black.

B2B LUT (LUTBB / LUTB) (R24H)

This command builds Look-up Table for Black - to- Black.

PLL Control (PLL) (R30H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

Controlling

PLL

0 0 0 0 1 1 0 0 0 0

0 1 - - M[2:0] N[2:0]

The command controls the PLL clock frequency. The PLL structure must support the following

frame rates:

M N Frame

Rate

M N Frame

Rate

M N Frame

Rate

M N Frame Rate

1

1 29 Hz

3

1 86 Hz

5

1 150 Hz

7

1 200 Hz

2 14 Hz 2 43 Hz 2 72 Hz 2 100 Hz

3 10 Hz 3 29 Hz 3 48 Hz 3 67 Hz

4 7 Hz 4 21 Hz 4 36 Hz 4 50 Hz

(Default)

5 6 Hz 5 17 Hz 5 29 Hz 5 40 Hz

6 5 Hz 6 14 Hz 6 24 Hz 6 33Hz

4.2 " e-Paper

7 4 Hz 7 12Hz 7 20 Hz 7 29 Hz

2

1 57 Hz

4

1 114 Hz

6

1 171 Hz

2 29 Hz 2 57 Hz 2 86 Hz

3 19 Hz 3 38 Hz 3 57 Hz

4 14 Hz 4 29Hz 4 43 Hz

5 11 Hz 5 23 Hz 5 34 Hz

6 10 Hz 6 19 Hz 6 29 Hz

7 8 Hz 7 16 Hz 7 24 Hz

Temperature Sensor Calibration (TSC) (R40H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

Sensing

Temperature

0 0 0 1 0 0 0 0 0 0

1 1 D10/TS7 D9/TS6 D8/TS5 D7/TS4 D6/TS3 D5/TS2 D4/TS1 D3/TS0

1 1 D2 D1 D0 - - - - -

4.2 " e-Paper

This command reads the temperature sensed by the temperature sensor.

TS[7:0]: When TSE (R41h) is set to 0, this command reads internal temperature sensor

value.

D[10:0]: When TSE (R41h) is set to 1, this command reads external LM75 temperature

sensor value.

TS[7:0]/D[10:3

]

Temperatur

e (℃)

TS[7:0]/D[10:3

]

Temperatur

e (℃)

TS[7:0]/D[10:3

]

Temperatur

e (℃)

1110_0111 -25 0000_0000 0 0001_1001 25

1110_1000 -24 0000_0001 1 0001_1010 26

1110_1001 -23 0000_0010 2 0001_1011 27

1110_1010 -22 0000_0011 3 0001_1100 28

1110_1011 -21 0000_0100 4 0001_1101 29

1110_1100 -20 0000_0101 5 0001_1110 30

1110_1101 -19 0000_0110 6 0001_1111 31

1110_1110 -18 0000_0111 7 0010_0000 32

1110_1111 -17 0000_1000 8 0010_0001 33

1111_0000 -16 0000_1001 9 0010_0010 34

1111_0001 -15 0000_1010 10 0010_0011 35

1111_0010 -14 0000_1011 11 0010_0100 36

4.2 " e-Paper

1111_0011 -13 0000_1100 12 0010_0101 37

1111_0100 -12 0000_1101 13 0010_0110 38

1111_0101 -11 0000_1110 14 0010_0111 39

1111_0110 -10 0000_1111 15 0010_1000 40

1111_0111 -9 0001_0000 16 0010_1001 41

1111_1000 -8 0001_0001 17 0010_1010 42

1111_1001 -7 0001_0010 18 0010_1011 43

1111_1010 -6 0001_0011 19 0010_1100 44

1111_1011 -5 0001_0100 20 0010_1101 45

1111_1100 -4 0001_0101 21 0010_1110 46

1111_1101 -3 0001_0110 22 0010_1111 47

1111_1110 -2 0001_0111 23 0011_0000 48

1111_1111 -1 0001_1000 24 0011_0001 49

Temperature Sensor Enable (TSE) (R41H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

Enable Temperature

Sensor/Offset

0 0 0 1 0 0 0 0 0 1

0 1 TSE - - - TO[3:0]

This command selects Internal or External temperature sensor.

4.2 " e-Paper

TSE: Internal temperature sensor switch

 0: Enable (Default) 1: Disable; using external sensor.

TO[3:0]: Temperature offset.

TO[3:0] Calculation TO[3:0] Calculation

0000 b 0 1000 -8

0001 1 1001 -7

0010 2 1010 -6

… … … …

0110 6 1110 -2

0111 7 1111 -1

Temperature Sensor Write (TSW) (R42H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

Write External

Temperature

Sensor

0 0 0 1 0 0 0 0 1 0

0 1 WATTR[7:0]

0 1 WMSB[7:0]

0 1 WLSB[7:0]

This command reads the temperature sensed by the temperature sensor. WATTR: D[7:6]: I2C

Write Byte Number

00b : 1 byte (head byte only)

01b : 2 bytes (head byte + pointer)

4.2 " e-Paper

10b : 3 bytes (head byte + pointer + 1st parameter)

11b : 4 bytes (head byte + pointer + 1st parameter + 2nd parameter)

D[5:3]: User-defined address bits (A2, A1, A0)

 D[2:0]: Pointer setting

WMSB[7:0]: MSByte of write-data to external temperature sensor.

WLSB[7:0]: LSByte of write-data to external temperature sensor.

Temperature Sensor Read (TSR) (R43H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

Read External

Temperature

Sensor

0 0 0 1 0 0 0 0 1 1

1 1 RMSB[7:0]

1 1 RLSB[7:0]

This command reads the temperature sensed by the temperature sensor.

RMSB[7:0]: MSByte read data from external temperature sensor

RLSB[7:0]: LSByte read data from external temperature sensor

VCOM And Data Interval Setting (CDI) (R50H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

Set Interval Between

Vcom and

Data

0 0 0 1 0 1 0 0 0 0

0 1 VBD[1:0] DDX[1:0] CDI[3:0]

This command indicates the interval of Vcom and data output. When setting the vertical back

porch, the total blanking will be kept (20 Hsync).

VBD[1:0]: Border data selection

B/W/Red mode (BWR=0)

4.2 " e-Paper

DDX[0] VBD[1:0] LUT DDX[0] VBD[1:0] LUT

0

00 Floating

1(Default)

00 LUTB

01 LUTR 01 LUTW

 10 LUTW 10 LUTR

11 LUTB 11 Floating

B/W mode (BWR=1)

DDX[0] VBD[1:0] LUT DDX[0] VBD[1:0] LUT

0

00 Floating

1(Default)

00 Floating

01 LUTBW

(1→0)

01 LUTWB

(1→0)

 10 LUTWB

(0→1)

 10 LUTBW

(0→1)

11 Floating 11 Floating

DDX[1:0]: Data polality.

DDX[1] for RED data, DDX[0] for BW data in the B/W/Red mode.

DDX[0] for B/W mode.

B/W/Red mode (BWR=0)

DDX[1:0] Data{Red,

B/W}

LUT DDX[1:0] Data{Red,

B/W}

LUT

4.2 " e-Paper

00

00 LUTW

10

00 LUTR

01 LUTB 01 LUTR

 10 LUTR 10 LUTW

11 LUTR 11 LUTB

01(Default)

00 LUTB

11

00 LUTR

01 LUTW 01 LUTR

 10 LUTR 10 LUTB

11 LUTR 11 LUTW

B/W mode (BWR=1)

DDX[0] Data{New,

Old}

LUT DDX[0] Data{New,

Old}

LUT

00

00 LUTWW

(0→0)

10

0 LUTBW(1→0)

01 LUTBW

(1→0)

1 LUTWB(0→1)

10 LUTWB

(0→1)

11

0 LUTWB(1→0)

 11 LUTBB

(1→1)

 1 LUTBW(0→1)

4.2 " e-Paper

01(Default)

00 LUTBB

(0→0)

01 LUTWB

(0→1)

10 LUTBW

(1→0)

11 LUTWW

(1→1)

CDI[3:0]: Vcom and data interval

CDI[3:0] Vcom and Data

Interval

CDI[3:0] Vcom and Data

Interval

0000 b 17 hsync 0110 11

0001 16 0111 10 (Default)

0010 15 … …

0011 14 1101 4

0100 13 1110 3

0101 12 1111 2

Low Power Detection (LPD) (R51H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 1 0 1 0 0 0 1

4.2 " e-Paper

Detect Low

Power

1 1 - - - - - - - LPD

This command indicates the input power condition. Host can read this flag to learn the battery

condition. LPD: Interval Low Power Detection Flag

0: Low power input (VDD < 2.5V) 1: Normal status (default)

TCON Setting (TCON) (R60H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

Set Gate/Source Non-

overlap Period

0 0 0 1 1 0 0 0 0 0

0 1 S2G[3:0] G2S[3:0]

This command defines non-overlap period of Gate and Source.

S2G[3:0] or G2S[3:0]: Source to Gate / Gate to Source Non-overlap period

S2G[3:0] or

G2S[3:0]

Period S2G[3:0] or

G2S[3:0]

Period

0000b 4 … …

0001 8 1011 48

0010 12(Default) 1100 52

0011 16 1101 56

0100 20 1110 60

0101 24 1111 64

Period = 660 nS.

4.2 " e-Paper

Resolution Setting (TRES) (R61H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

Set Display

Resolution

0 0 0 1 1 0 0 0 0 1

0 1 HRES[8]

0 1 HRES[7:3] 0 0 0

0 1 - - - - - - - VRES[8]

0 1 VRES[7:0]

This command defines alternative resolution and this setting is of higher priority than the RES[1:0]

in R00H (PSR).

HRES[8:3]: Horizontal Display Resolution

VRES[8:0]: Vertical Display Resolution Active channel calculation:

 GD : First active gate = G0 (Fixed); LAST active gate = VRES[8:0] - 1

 SD : First active source =S0 (Fixed); LAST active source = HRES[8:3]*8 – 1

GSST Setting(GSST) (R65H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

Gate/Source 0 0 0 1 1 0 0 1 0 1

4.2 " e-Paper

Start setting
0 1 - - - - - - - HST8

0 1 HST[7:3] 0 0 0

0 1 - - - - - - - VST[8]

0 1 V ST[7:0]

This command defines the First Active Gate and First Active Source of active channels.

HST[8:3]: First active source. (Default: S0)

VST[8:0]: First active gate. (Default: G0)

Get Status (FLG) (R71H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

Read

Flags

0 0 0 1 1 1 0 0 0 1

1 1 - PTL_flag I2C_ERR I2C_

BUSY

data_

flag

PON POF BUSY

This command reads the IC status.

PTL_FLAG Partial display status (high: partial

mode)

I2C_ERR: I2C master error status

I2C_BUSY: I2C master busy status (low active)

data_flag: Driver has already received all the

one frame data

PON: Power ON status

POF: Power OFF status

4.2 " e-Paper

BUSY: Driver busy status (low active)

Auto Measure Vcom (AMV) (R80H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

Automatically

measure

Vcom

0 0 1 0 0 0 0 0 0 0

0 1 - - AMVT[1:0] XON AMVS AMV AMVE

This command reads the IC status.

AMVT[1:0]: Auto Measure Vcom Time

00b: 3s 01b: 5s (Default)

10b: 8s 11b: 10s XON: All Gate ON of AMV

0: Gate normally scan during Auto Measure VCOM period. (default) 1: All Gate ON during Auto

Measure VCOM period. AMVS: Source output of AMV

0: Source output 0V during Auto Measure VCOM period. (default) 1: Source output VDHR during

Auto Measure VCOM period.

AMV: Analog signal

0: Get Vcom value with the VV command (R81h) (default)

1: Get Vcom value in analog signal. (External analog to digital converter) AMVE: Auto Measure

Vcom Enable (/Disable)

0: No effect

1: Trigger auto Vcom sensing.

Vcom Value (VV) (R81H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

0 0 1 0 0 0 0 0 0 1

4.2 " e-Paper

Automatically

measure Vcom

1 1 - - VV[5:0]

This command gets the Vcom value.

VV[5:0]: Vcom Value Output

VV[5:0] Vcom value

00 0000b -0.10 V

00 0001b -0.15 V

00 0010b -0.20 V

: :

11 1010b -3.00 V

VCM_DC Setting (VDCS) (R82H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

Set

VCM_DC

0 0 1 0 0 0 0 0 1 0

0 1 - - VDCS[5:0]

This command sets VCOM_DC value

VDCS[5:0]: VCOM_DC Setting

VDCS[5:0] Vcom value

00 0000b -0.10 V (default)

00 0001b -0.15 V

4.2 " e-Paper

00 0010b -0.20 V

: :

11 1010b -3.00 V

Partial Window(PTL) (R90H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

Set Partial

Window

0 0 1 0 0 1 0 0 0 0

0 1 - - - - - - - HRST[8]

0 1 HRST[7:3] 0 0 0

0 1 - - - - - - - HRED[8]

 0 1 HRED[7:3] 1 1 1

0 1 - - - - - - - VRST[8]

0 1 VRST[7:0]

0 1 - - - - - - - VRED[8]

0 1 VRED[7:0]

0 1 - - - - - - - PT_SCAN

This command sets partial window.

HRST[8:3]: Horizontal start channel bank. (value 00h~31h)

HRED[7:3]: Horizontal end channel bank. (value 00h~31h). HRED must be greater than HRST.

VRST[8:0]: Vertical start line. (value 000h~12Bh)

4.2 " e-Paper

VRED[8:0]: Vertical end line. (value 000h~12Bh). VRED must be greater than VRST.

PT_SCAN: 0: Gates scan only inside of the partial window.

 1: Gates scan both inside and outside of the partial window. (default)

Partial In (PTIN) (R91H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

Partial In 0 0 1 0 0 1 0 0 0 1

This command makes the display enter

partial mode.

(33) Partial Out (PTOUT) (R92H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

Partial In 0 0 1 0 0 1 0 0 1 0

This command makes the display exit partial mode and enter normal mode.

Program Mode (PGM) (RA0H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

Enter

Mode

Program 0 0 1 0 1 0 0 0 0 0

0 1 1 0 1 0 0 1 0 1

After this command is issued, the chip would enter the program mode.

The mode would return to standby by hardware reset.

The only one parameter is a check code, the command would be excuted if check code = 0xA5.

Active Program (APG) (RA1H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

4.2 " e-Paper

Active Program

OTP

0 0 1 0 1 0 0 0 0 1

After this command is transmitted, the programming state machine would be activated.

The BUSY flag would fall to 0 until the programming is completed.

Read OTP Data (ROTP) (RA2H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

Read OTP data for

check

0 0 1 0 1 0 0 0 1 0

1 1 Dummy

1 1 The data of address 0x000 in the

OTP

1 1 The data of address 0x001 in the

OTP

1 1 ..

1 1 The data of address (n-1) in the

OTP

1 1 The data of address (n) in the OTP

The command is used for reading the content of OTP for checking the data of programming. The

value of (n) is depending on the amount of programmed data, the max address = 0xFFF.

4.2 " e-Paper

The sequence of programming OTP

Power Saving (PWS) (RE3H)

Action W/R C/D D7 D6 D5 D4 D3 D2 D1 D0

Power Saving

for

Vcom

&Source

0 0 1 1 1 0 0 0 1 1

0 1 VCOM_W[3:0] SD_W[3:0]

This command is set for saving power during fresh period. If the output voltage of VCOM / Source

is from negative to positive or from positive to negative, the power saving mechanism will be

activated. The active period width is defined by the following two parameters.

VCOM_W[3:0]: VCOM power saving width (unit = line period)

SD_W[3:0]: Source power saving width (unit = 660nS)

4.2 " e-Paper

4.2 " e-Paper

7. Electrical Characteristics

7-1) Absolute maximum rating

Parameter Symbol Rating Unit

Logic Supply

Voltage

VCI -0.3 to +6.0 V

Logic Input Voltage VIN -0.3 to VCI +2.4 V

Operating Temp.

range

TOPR 0 to +50 ℃

Storage Temp. range TSTG -25 to +70 ℃

7-2) Panel DC Characteristics

The following specifications apply for: VSS = 0V, VCI = 3.3V, TA = 25℃

Parameter Symbol Conditions Min Typ Max Unit

Single ground VSS - - 0 - V

Logic Supply

Voltage

VCI - 2.3 3.3 3.6 V

High level input

voltage

VIH Digital input pins 0.7VCI - VCI V

Low level input

voltage

VIL Digital input pins 0 - 0.3VCI V

High level output

voltage

VOH Digital input pins ,

IOH= 400uA

VCI-

0.4

- - V

4.2 " e-Paper

Low level output

voltage

VOL Digital input pins ,

IOL= -400uA

0 - 0.4 V

Image update current IUPDATE - - 8 10 mA

Standby panel

current

Istandby - - - 5 uA

Power panel（

update） PUPDATE

- - 26.4 40 mW

Standby power panel PSTBY - - - 0.0165 mW

Operating

temperature

- - 0 - 50 ℃

Storage temperature - - -25 - 70 ℃

Image update Time

at 25 ℃

- - - 6 8 Sec

Deep sleep mode

current

IVCI

DC/DC off

No clock

No input load

Ram data not retain

- 2 5 uA

Sleep mode current

IVCI

DC/DC off No clock

No input load

Ram data retain

- 35 50 uA

- The Typical power consumption is measured with following pattern transition: from

horizontal 2 gray scale pattern to vertical

4.2 " e-Paper

2 gray scale pattern.(Note 7-1)

The standby power is the consumed power when the panel controller is in standby mode.

The listed electrical/optical characteristics are only guaranteed under the controller & waveform

provided by Waveshare.

Vcom is recommended to be set in the range of assigned value ± 0.1V.

Note 7-1

The Typical power consumption

7-3) Panel AC Characteristics 7-3-1) Oscillator frequency

The following specifications apply for : VSS = 0V, VCI = 3.3V, TA = 25℃

Parameter Symbol Conditions Min Typ Max Unit

Internal Oscillator

frequency

Fosc VCI=2.3 to

3.6V

- 1.625 - MHz

7-3-2) MCU Interface 7-3-2-1) MCU Interface Selection

In this module, there are 4-wire SPI and 3-wire SPI that can communicate with MCU. The MCU

interface mode can be set by hardware selection on BS1 pins. When it is “Low”, 4-wire SPI is

selected. When it is “High”, 3-wire SPI (9 bits SPI) is selected.

Pin Name Data/Command Interface Control Signal

Bus

interface

D1 D0 CS# D/C# RES#

4.2 " e-Paper

SPI4 SDIN SCLK CS# D/C# RES#

SPI3 SDIN SCLK CS# L RES#

Table 7-1: MCU interface assignment under different bus interface mode

Note 7-2: L is connected to VSS

Note 7-3: H is connected to VCI

7-3-2-2) MCU Serial Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCLK, serial data SDIN, D/C#, CS#. In SPI mode, D0 acts

as SCLK, D1 acts as SDIN.

Function CS# D/C# SCLK

Write

Command
L L ↑

Write data L H ↑

Table 7-2: Control pins of 4-wire Serial Peripheral interface

Note 7-4: ↑stands for rising edge of signal

SDIN is shifted into an 8-bit shift register in the order of D7, D6, ... D0. The data byte in the shift

register is written to the Graphic Display Data RAM (RAM) or command register in the same

clock. Under serial mode, only write operations are allowed.

4.2 " e-Paper

Figure 7-1: Write procedure in 4-wire Serial Peripheral Interface mode

7-3-2-3) MCU Serial Interface (3-wire SPI)

The 3-wire serial interface consists of serial clock SCLK, serial data ADIN and CS#.

In 3-wire SPI mode, D0 acts as SCLK, D1 acts as SDIN, The pin D/C# can be connected to an

external ground.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether

9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0

bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in shift

register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit =

0).Under serial mode, only write operations are allowed.

Function CS# D/C# SCLK

Write

Command
L Tie LOW ↑

Write data L Tie LOW ↑

Table 7-3: Control pins of 3-wire Serial Peripheral Interface

Note 7-5: ↑stands for rising edge of signal

4.2 " e-Paper

Figure 7-2: Write procedure in 3-wire Serial Peripheral Interface mode

7-3-3) Timing Characteristics of Series Interface

Symbol Signal Parameter Min Typ Max Unit

tcss

CS#

Chip Select Setup Time 60 - - ns

tcsh Chip Select Hold Time 65 - - ns

4.2 " e-Paper

tscc Chip Select Setup Time 20 - - ns

tchw Chip Select Setup Time 40 - - ns

tscycw

SCLK

Serial clock cycle (write) 100 - - ns

tshw SCL “H” pulse width

(write)

35 - - ns

tslw SCL“L” pulse width

(write)

35 - - ns

tscycr Serial clock cycle (Read) 150 - - ns

tshr SCL “H” pulse width

(Read)

60 - - ns

tslr SCL “L” pulse width

(Read)

60 - - ns

tsds

SDIN

(DIN)

(DOUT)

Data setup time 30 - - ns

tsdh Data hold time 30 - - ns

tacc Access time - - 10 ns

toh Output disable time 15 - - ns

7-4) Power Consumption

Parameter Symbol Conditions TYP Max Unit Remark

4.2 " e-Paper

Panel power consumption during

update

- 25℃ 26.4 40 mW -

Power consumption in standby

mode

- 25℃ - 0.0165 mW -

7-5) Reference Circuit

Figure . 7-5 (1)

Figure . 7-5 (2)

4.2 " e-Paper

Figure . 7-5 (3)

4.2 " e-Paper

Figure . 7-5 (4)

8. Typical Operating Sequence 8-1) Normal Operation Flow

BWR mode & LUT form Register

4.2 " e-Paper

BWR mode & LUT form OTP

System Power

Reset the EPD driver IC

Booster soft start

Power setting

Power on

Display refresh

Border floating

Turn off Enter into deep

sleep mode

Panel setting

Load image data

PLL control

Resolution setting

4.2 " e-Paper

8-2) Reference Program Code

System Power

Reset the EPD driver IC

Booster soft start

Power on

Display refresh

Border floating

Turn off Enter into deep

sleep mode

Panel setting

Load image data

Resolution setting

4.2 " e-Paper

Note1: Set border to floating.

2. BWR mode & LUT from OTP

.BWR mode & LUT from register 1

BUSY=Low

BUSY=Hig

BUSY=Lo

BUSY=Hig

System power

Reset the EPD driver IC

Power on

SPI (0x04)

Check BUSY pin

Panel setting

S PI (0x00,0xbf)

PLL control

SPI (0x30,0x3a)

Resolution setting

SPI (0x61,0x01,0x90,0x01,0x2c)

VCM_DC setting

SPI (0x82,0x12)

Vcom and data interval setting

SPI (0x50,0x87)

Booster soft start

SPI (0x06,0x17,0x17,0x17)

Power setting

SPI (0x01,0x03,0x00,0x2b,0x2b,0x09)

LUT

Data start transmission 1

SPI (0x10)

Transport old data

Data start transmission 2

SPI (0x13)

Transport new data

Display refresh

SPI (0x12)

Check BUSY pin

Power off

SPI (0x02)

Deep sleep

SP I (0x07,0xa5)

Vcom and data interval setting

SPI
Note1

4.2 " e-Paper

Note1: Set border to floating.

9. Optical characteristics

9-1) Specifications

Measurements are made with that the illumination is under an angle of 45 degrees, the detection is

perpendicular unless otherwise specified.

BUSY=Low

BUSY=Low BUSY=Hig

BUSY=Hig

System power

Reset the EPD driver IC

Power on

SPI x04) 0

Check BUSY pin

Panel setting

SPI (0x00,0x1f)

Display refresh

SPI (0x12)

Check BUSY pin

Power off

SPI (0x02)

Deep sleep

SP I (0x07,0xa5)

Data start transmission 1

SPI (0x10)

Transport old data

Data start transmission 2

SPI (0x13)

Transport new data

Vcom and data interval setting

SPI
Note1

Booster soft start

SPI (0x06,0x17,0x17,0x17)

Resolution setting

SPI (0x61,0x01,0x90,0x01,0x2c)

Vcom and data interval setting

SPI (0x50,0x87)

4.2 " e-Paper

T=25℃

SYMBOL PARAMETER CONDITIONS MIN TYPE MAX UNIT Note

R Reflectance White 30 35 - %
Note

9-1

Gn 2Grey Level - - DS＋(WS-

DS)×n(m-1)

- L* -

CR Contrast Ratio indoor 8 - - -

Panel’s

life

0℃~50℃

 1000000 times or

5 years

 Note

9-2

WS: White state, DS: Dark state Gray state from Dark to White : DS、WS m: 2

Note 9-1: Luminance meter: Eye – One Pro Spectrophotometer

Note 9-2: Panel life will not guaranteed when work in temperature below 0 degree or above 50

degree. Each update interval time should be minimum at 180 seconds.

9-2) Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (R1) and the

reflectance in a dark area (Rd)() :

R1: white reflectance Rd: dark reflectance

CR = R1/Rd

Display

4.2 " e-Paper

Detector

9-3) Reflection Ratio

The reflection ratio is expressed as:

R = Reflectance Factor white board x (L center / L white board)

L center is the luminance measured at center in a white area (R=G =B=1). L white board is the luminance

of a standard white board. Both are measured with equivalent illumination source. The viewing

angle shall be no more than 2 degrees.

9-4) Bi-stability

The Bi-stability standard as follows:

Bi-stability Result

α

θ

4.2 " e-Paper

24 hours

Luminance drift

 AVG MAX

White state △L* - 3

Black state △L* - 3

10. Handling, Safety and Environmental Requirements

Warning

The display glass may break when it is dropped or bumped on a hard surface. Handle with care.

Should the display break, do not touch the electrophoretic material. In case of contact with

electrophoretic material, wash with water and soap.

Caution

The display module should not be exposed to harmful gases, such as acid and alkali gases, which

corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty

agreements.

Observe general precautions that are common to handling delicate electronic components. The

glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to

static electricity and other rough environmental conditions.

Data sheet status

Product specification The data sheet contains final product specifications.

Limiting values

4.2 " e-Paper

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134).

Stress above one or more of the limiting values may cause permanent damage to the device.

These are stress ratings only and operation of the device at these or any other conditions above

those given in the Characteristics sections of the specification is not implied. Exposure to limiting

values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and dose not form part of the specification.

Product environmental certification

RoHS

11. Reliability test

 TEST CONDITION METHOD REMARK

1

High-

Temperatu re

Operation

T = 50℃,

RH=35%

for 240 hrs

When the experimental cycle finished, the

EPD samples will be taken out from the high

temperature environmental chamber and set

aside for a few minutes. As EPDs return to

room temperature, testers will observe the

appearance, and test electrical and optical

performance based on standard # IEC 60

068-2-2Bp.

When

experiment

finished, the

EPD

must meet

electrical and

optical

performance

standards.

2

Low-

Temperatu re

Operation

T = 0℃ for

240

hrs

When the experimental cycle finished, the

EPD samples will be taken out from the low

temperature environmental chamber and set

aside for a few minutes. As EPDs return

When

experiment

finished, the

EPD

4.2 " e-Paper

room temperature, testers will observe the

appearance, and test electrical and optical

performance based on standard # IEC 60

068-2-2Ab.

must meet

electrical and

optical

performance

standards.

3

High-

Temperatu re

Storage

T = +70℃,

RH=35%

for 240 hrs

Test in white

pattern

When the experimental cycle finished, the

EPD samples will be taken out from the high

temperature environmental chamber and set

aside for a few minutes. As EPDs return to

room temperature, testers will observe the

appearance, and test electrical and optical

performance based on standard # IEC 60

068-2-2Bp.

When

experiment

finished, the

EPD

must meet

electrical and

optical

performance

standards.

4

Low-

Temperatu re

Storage

T = -25℃ for

240

hrs

Test in white

pattern

When the experimental cycle finished, the

EPD samples will be taken out from the low

temperature environmental chamber and set

aside for a few minutes. As EPDs return to

room temperature, testers will observe the

appearance, and test electrical and optical

performance based on standard # IEC 60

068-2-2Ab

When

experiment

finished, the

EPD

must meet

electrical and

optical

performance

standards.

5

High

Temperature,

High-

Humidity

T=+40℃,

RH=80%

for240hrs

When the experimental cycle finished, the

EPD samples will be taken out from the

environmental chamber and set aside for a

few minutes. As EPDs return to room

temperature, testers will observe the

When

experiment

finished, the

EPD

4.2 " e-Paper

Operation appearance, and test electrical and optical

performance based on standard # IEC 60

068-2-3CA.

must meet

electrical and

optical

performance

standards.

6

High

Temperature,

High-

Humidity

Storage

T=+60℃,

RH=80%

for240hrs

Test in white

pattern

When the experimental cycle finished, the

EPD samples will be taken out from the

environmental chamber and set aside for a

few minutes. As EPDs return to room

temperature, testers will observe the

appearance, and test electrical and optical

performance based on standard # IEC 60

068-2-3CA.

When

experiment

finished, the

EPD

must meet

electrical

performance

standards.

7
Temperature

Cycle

[-25℃

30mins]→

[+70℃,

RH=35%

30mins],

1. Samples are put in the Temp &

Humid. Environmental Chamber.

Temperature cycle starts with -25℃, storage

period 30 minutes. After 30 minutes, it

needs 30min to

When

experiment

finished, the

EPD must meet

electrical

www.waveshare.com 177／226

4.2 " e-Paper

 70cycles,

Test in white

pattern

2.

3.

let temperature rise to 70℃. After

30min, temperature will be adjusted to

70℃ and storage period is 30 minutes.

After 30 minutes, it needs 30min to let

temperature rise to -25℃. One

temperature cycle (2hrs) is complete.

Temperature cycle repeats 70 times.

When 70 cycles finished, the samples

will be taken out from experiment

chamber and set aside a few minutes.

As EPDs return to room temperature,

tests will observe the appearance, and

test electrical and optical performance

based on standard # IEC 60 068-2-

14NB.

and optical

performance

standards.

8
UV exposure

Resistance

765 W/m2 for

168 hrs,40℃

Standard # IEC 60 068-2-5 Sa

9
Electrostatic

discharge

Machine model:

+/-250V,

0Ω,200pF

Standard # IEC61000-4-2

10
Package

Vibration

1.04G,Frequency

:

10~500Hz

Direction :

X,Y,Z

Full packed for shipment

178

Duration:1hours

in each direction

11

Package

Drop

Impact

Drop from

height of 122 cm

on

Concrete surface

Drop sequence:1

corner, 3edges,

6face

One drop for

each.

Full packed for shipment

Actual EMC level to be measured on customer application.

Note: (1) The protective film must be removed before temperature test.

(2) In order to make sure the display module can provide the best display quality, the update

should be made after putting the display module in stable temperature environment for 15 mins.

12. Point and line standard

Shipment Inseption Standard

Part-A：Active area Part-B：Border area

Equipment：Electrical test fixture, Point gauge

Outline dimension：

91.0(H)×77.0(V) ×1.18(D) Unit：mm

179

Environment

Temperature Humidity Illuminanc

e

Distance Time Angle

23±2℃

55±

5%RH

1200～

1500Lux

300 mm 35 Sec

Name Causes Spot size Part-A Part-B

Spot

B/W spot in

glass or

protection sheet,

foreign mat. Pin

hole

D ≤ 0.25mm Ignore

Ignore 0.25mm ＜ D ≤ 0.4mm 4

0.4mm ＜ D 0

Scratch or line

defect

Scratch on glass

or

Scratch on FPL

or

Particle is

Protection

sheet.

Length Width Part-A

Ignore

L ≤2.0mm W≤0.2 mm Ignore

2.0 mm < L≤

5.0mm

0.2 mm<W≤

0.3mm

2

5.0 mm < L 0.3mm < W 0

Air bubble Air bubble

D1, D2 ≤ 0.2 mm Ignore

Ignore 0.2 mm < D1,D2 ≤ 0.35mm 4

0.35mm < D1, D2 0

Side Fragment

180

 X≤5mm，Y≤1mm & display is ok,

Ignore

Remarks: Spot define: That only can be seen under WS or DS defects.

 Any defect which is visible under gray pattern or transition process but invisible under black

and white is disregarded.

 Here is definition of the “Spot” and “Scratch or line defect”.

Spot: W > 1/4L Scratch or line defect: W ≤1/4L

 Definition for L/W and D (major axis)

 FPC bonding area pad doesn’t allowed visual inspection.

Note: AQL = 0.4

13. Packing

Shipment Inseption Standard

181

Outline dimensionempty tray：

vacuum

1st layer

Note: AQL = 0.4

182

Appendix G: Prototype Code

 1. #include <Wire.h>
 2. #include <PWFusion_TCA9548A.h>
 3. #include "Adafruit_TCS34725.h"
 4. #include <math.h>
 5.
 6. //pressure sensor pins
 7. #define Q1 39
 8. #define Q2 34
 9. #define Q3 35
 10. #define Q4 32
 11.
 12.
 13. // global variables
 14. //color sensors
 15. TCA9548A i2cMux;
 16. Adafruit_TCS34725 tcs;//8-bit var
 17. uint16_t red, green, blue, clear;//16-bit var
 18.
 19. //general
 20. uint16_t p1, p2, p3, p4, Q1val, Q2val, Q3val, Q4val, Q1zero, Q2zero, Q3zero, Q4zero,
bagLocation;
 21. int Q1diff, Q3diff, Q2diff, Q4diff;
 22. int percentRed, Clear, percentBlue;
 23. uint8_t error=0;
 24. int minVal=3000;
 25.
 26. void setup()
 27. {
 28. // Initialize I2C and Serial
 29. Serial.begin(9600);// begin comms. with serial monitor
 30. Serial.println("**");
 31.
 32. Wire.begin();
 33. i2cMux.begin(0x70);
 34. i2cMux.setChannel(CHAN_NONE);
 35.
 36. // Initialize color sensors
 37. i2cMux.begin(0x71);
 38. i2cMux.setChannel(CHAN1);//QUAD1
 39. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
 40. Serial.println("\n");
 41. if (tcs.begin()) {
 42. Serial.println("Found sensor Q1");
 43. } else {
 44. Serial.println("No TCS34725 found color sensor found for Q1");
 45. error=1;
 46. }
 47. i2cMux.setChannel(CHAN2);//QUAD2
 48. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
 49. if (tcs.begin()) {
 50. Serial.println("Found sensor Q2");
 51. } else {
 52. Serial.println("No TCS34725 found color sensor found for Q2");
 53. error=1;
 54. }
 55. //change from MUX001 to MUX000

183

 56. i2cMux.setChannel(CHAN_NONE);
 57. i2cMux.begin(0x70);
 58.
 59. i2cMux.setChannel(CHAN3);//QUAD3
 60. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
 61. if (tcs.begin()) {
 62. Serial.println("Found sensor Q3");
 63. } else {
 64. Serial.println("No TCS34725 color sensor found for Q3");
 65. error=1;
 66. }
 67. i2cMux.setChannel(CHAN4);//QUAD4
 68. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
 69. if (tcs.begin()) {
 70. Serial.println("Found sensor Q4");
 71. } else {
 72. Serial.println("No TCS34725 color sensor found for Q4");
 73. error=1;
 74. }
 75. i2cMux.setChannel(CHAN_NONE);
 76. //Wire.endTransmission();
 77. Wire.end();
 78. //Error loo
 79. while(error)
 80. {
 81. Serial.println("error");
 82. delay(10000);
 83. }
 84.
 85.
 86. //Calibrate pressure sensors
 87. analogReadResolution(12);
 88. //pressure sensor read
 89. Serial.println("Clear the board for calibration.");
 90. delay(5000);
 91. //QUAD 1
 92. Q1val=analogRead(Q1);
 93. //QUAD 2
 94. Q2val=analogRead(Q2);
 95. //QUAD 3
 96. Q3val=analogRead(Q3);
 97. //QUAD 4
 98. Q4val=analogRead(Q4);
 99. //ensure all feet have contact
100. while(1)//calibration loop
101. {
102. if(Q1val>minVal)
103. {
104. Serial.print("Add shim to foot in Quad 1.");
105. while(1)
106. {
107. Q1val=analogRead(Q1);
108. if(Q1val<minVal){break;}
109. }//wait for user adjustment
110. }//end if
111. else{p1=1;}
112. if(Q2val>minVal)
113. {
114. Serial.print("Add shim to foot in Quad 2.");
115. while(1)
116. {
117. Q2val=analogRead(Q2);
118. if(Q2val<minVal){break;}
119. }//wait for user adjustment
120. }//end if

184

121. else{p2=1;}
122. if(Q3val>minVal)
123. {
124. Serial.print("Add shim to foot in Quad 3.");
125. while(1)
126. {
127. Q3val=analogRead(Q3);
128. if(Q3val<minVal){break;}
129. }//wait for user adjustment
130. }//end if
131. else{p3=1;}
132. if(Q4val>minVal)
133. {
134. Serial.print("Add shim to foot in Quad 4.");
135. while(1)
136. {
137. Q4val=analogRead(Q4);
138. if(Q4val<minVal){break;}
139. }//wait for user adjustment
140. }//end if
141. else{p4=1;}
142.
143. if((p1+p2+p3+p4)==4){break;}//leave calibration loop
144.
145. }//end calibration loop
146. //calibrate zeros
147. Q1zero=Q1val;
148. Q2zero=Q2val;
149. Q3zero=Q3val;
150. Q4zero=Q4val;
151. Serial.println("Pressure sensors are calibrated.");
152.
153. }//end setup
154.
155. void loop() {
156. //bag location logic
157. //pressure sensor read
158. //QUAD 1
159. Q1val=analogRead(Q1);
160. //Serial.print("Quadrant 1: ");Serial.print(Q1val);
161. Q1diff=Q1zero-Q1val;
162. Serial.print("Quadrant 1: ");Serial.print(Q1diff);
163. //QUAD 2
164. Q2val=analogRead(Q2);
165. //Serial.print("Quadrant 2: ");Serial.print(Q2val);
166. Q2diff=Q2zero-Q2val;
167. Serial.print("Quadrant 2: ");Serial.print(Q2diff);
168. //QUAD 3
169. Q3val=analogRead(Q3);
170. //Serial.print("Quadrant 3: ");Serial.print(Q3val);
171. Q3diff=Q3zero-Q3val;
172. Serial.print("Quadrant 3: ");Serial.print(Q3diff);
173. //QUAD 4
174. Q4val=analogRead(Q4);
175. //Serial.print("Quadrant 4: ");Serial.print(Q4val);
176. Q4diff=Q4zero-Q4val;
177. Serial.print("Quadrant 4: ");Serial.print(Q4diff);
178. //find bag location
179. if(Q1diff<Q2diff && Q1diff<Q3diff && Q1diff<Q4diff)
180. {
181. bagLocation=3;
182. }//end if
183. else if(Q2diff<Q1diff && Q2diff<Q3diff && Q2diff<Q4diff)
184. {
185. bagLocation=4;

185

186. }//end else if
187. else if(Q3diff<Q1diff && Q3diff<Q2diff && Q3diff<Q4diff)
188. {
189. bagLocation=1;
190. }//end else if
191. else if(Q4diff<Q1diff && Q4diff<Q2diff && Q4diff<Q3diff)
192. {
193. bagLocation=2;
194. }//end else if
195.
196.
197. if (bagLocation==1)
198. {
199. Wire.begin();
200. i2cMux.begin(0x71);
201. i2cMux.setChannel(CHAN1);
202. }//end if location 1
203. if (bagLocation==2)
204. {
205. Wire.begin();
206. i2cMux.begin(0x71);
207. i2cMux.setChannel(CHAN2);
208. }//end if location 2
209. if (bagLocation==3)
210. {
211. Wire.begin();
212. i2cMux.begin(0x70);
213. i2cMux.setChannel(CHAN3);
214. }//end if location 3
215. if (bagLocation==4)
216. {
217. Wire.begin();
218. i2cMux.begin(0x70);
219. i2cMux.setChannel(CHAN4);
220. }//end if location 4
221.
222. tcs.getRawData(&red, &green, &blue, &clear);
223. Clear=clear/100;
224. percentRed=red/Clear;
225. percentBlue=blue/Clear;
226. //Serial.print("Red= "); Serial.print(percentRed,DEC); Serial.print(" ");
227. //Serial.print("Blue= "); Serial.print(percentBlue,DEC); Serial.println(" ");
228.
229.
230. if(percentRed>70)
231. {
232. Serial.println("The board has no bags.");
233. }//end if
234. else if(percentRed<=percentBlue+5)
235. {
236. Serial.print("A blue bag is in quadrant ");Serial.print(bagLocation);
Serial.println(".");
237. }//end else if
238. else if(percentRed>(percentBlue+5))
239. {
240. Serial.print("A red bag is in quadrant ");Serial.print(bagLocation);
Serial.println(".");
241. }//end else if
242.
243. delay(3000);
244. }//end loop
245.

186

Appendix H: Primary Communication Code

 1. #include <esp_now.h>
 2. #include <WiFi.h>
 3. #include <esp_wifi.h> // only for esp_wifi_set_channel()
 4.
 5. // Global copy of slave
 6. esp_now_peer_info_t slave;
 7. #define CHANNEL 1
 8. #define PRINTSCANRESULTS 0
 9. #define DELETEBEFOREPAIR 0
 10.
 11. struct DataPacket{
 12.
 13. int redscore;
 14. int bluescore;
 15.
 16. };
 17.
 18. DataPacket dataToSend;
 19.
 20. const int buttonPin = 2;
 21.
 22. void setup() {
 23. Serial.begin(115200);
 24. //Set device in STA mode to begin with
 25. WiFi.mode(WIFI_STA);
 26. esp_wifi_set_channel(CHANNEL, WIFI_SECOND_CHAN_NONE);
 27. Serial.println("ESPNow/Basic/Master Example");
 28. // This is the mac address of the Master in Station Mode
 29. Serial.print("STA MAC: "); Serial.println(WiFi.macAddress());
 30. Serial.print("STA CHANNEL "); Serial.println(WiFi.channel());
 31. // Init ESPNow with a fallback logic
 32. InitESPNow();
 33. // Once ESPNow is successfully Init, we will register for Send CB to
 34. // get the status of Trasnmitted packet
 35. esp_now_register_send_cb(OnDataSent);
 36.
 37. //Scores
 38. dataToSend.redscore = 2;
 39. dataToSend.bluescore = 2;
 40.
 41. pinMode(buttonPin, INPUT_PULLUP);
 42.
 43. }
 44.
 45. // Init ESP Now with fallback
 46. void InitESPNow() {
 47. WiFi.disconnect();
 48. if (esp_now_init() == ESP_OK) {
 49. Serial.println("ESPNow Init Success");
 50. }
 51. else {
 52. Serial.println("ESPNow Init Failed");
 53. // Retry InitESPNow, add a counte and then restart?
 54. // InitESPNow();
 55. // or Simply Restart
 56. ESP.restart();

187

 57. }
 58. }
 59.
 60. // Scan for slaves in AP mode
 61. void ScanForSlave() {
 62. int16_t scanResults = WiFi.scanNetworks(false, false, false, 300, CHANNEL); // Scan only
on one channel
 63. // reset on each scan
 64. bool slaveFound = 0;
 65. memset(&slave, 0, sizeof(slave));
 66.
 67. Serial.println("");
 68. if (scanResults == 0) {
 69. Serial.println("No WiFi devices in AP Mode found");
 70. } else {
 71. Serial.print("Found "); Serial.print(scanResults); Serial.println(" devices ");
 72. for (int i = 0; i < scanResults; ++i) {
 73. // Print SSID and RSSI for each device found
 74. String SSID = WiFi.SSID(i);
 75. int32_t RSSI = WiFi.RSSI(i);
 76. String BSSIDstr = WiFi.BSSIDstr(i);
 77.
 78. if (PRINTSCANRESULTS) {
 79. Serial.print(i + 1);
 80. Serial.print(": ");
 81. Serial.print(SSID);
 82. Serial.print(" (");
 83. Serial.print(RSSI);
 84. Serial.print(")");
 85. Serial.println("");
 86. }
 87. delay(10);
 88. // Check if the current device starts with `Slave`
 89. if (SSID.indexOf("Slave") == 0) {
 90. // SSID of interest
 91. Serial.println("Found a Slave.");
 92. Serial.print(i + 1); Serial.print(": "); Serial.print(SSID); Serial.print(" [");
Serial.print(BSSIDstr); Serial.print("]"); Serial.print(" ("); Serial.print(RSSI);
Serial.print(")"); Serial.println("");
 93. // Get BSSID => Mac Address of the Slave
 94. int mac[6];
 95. if (6 == sscanf(BSSIDstr.c_str(), "%x:%x:%x:%x:%x:%x", &mac[0], &mac[1], &mac[2],
&mac[3], &mac[4], &mac[5])) {
 96. for (int ii = 0; ii < 6; ++ii) {
 97. slave.peer_addr[ii] = (uint8_t) mac[ii];
 98. }
 99. }
100.
101. slave.channel = CHANNEL; // pick a channel
102. slave.encrypt = 0; // no encryption
103.
104. slaveFound = 1;
105. // we are planning to have only one slave in this example;
106. // Hence, break after we find one, to be a bit efficient
107. break;
108. }
109. }
110. }
111.
112. if (slaveFound) {
113. Serial.println("Slave Found, processing..");
114. } else {
115. Serial.println("Slave Not Found, trying again.");
116. }
117.

188

118. // clean up ram
119. WiFi.scanDelete();
120. }
121.
122. // Check if the slave is already paired with the master.
123. // If not, pair the slave with master
124. bool manageSlave() {
125. if (slave.channel == CHANNEL) {
126. if (DELETEBEFOREPAIR) {
127. deletePeer();
128. }
129.
130. Serial.print("Slave Status: ");
131. // check if the peer exists
132. bool exists = esp_now_is_peer_exist(slave.peer_addr);
133. if (exists) {
134. // Slave already paired.
135. Serial.println("Already Paired");
136. return true;
137. } else {
138. // Slave not paired, attempt pair
139. esp_err_t addStatus = esp_now_add_peer(&slave);
140. if (addStatus == ESP_OK) {
141. // Pair success
142. Serial.println("Pair success");
143. return true;
144. } else if (addStatus == ESP_ERR_ESPNOW_NOT_INIT) {
145. // How did we get so far!!
146. Serial.println("ESPNOW Not Init");
147. return false;
148. } else if (addStatus == ESP_ERR_ESPNOW_ARG) {
149. Serial.println("Invalid Argument");
150. return false;
151. } else if (addStatus == ESP_ERR_ESPNOW_FULL) {
152. Serial.println("Peer list full");
153. return false;
154. } else if (addStatus == ESP_ERR_ESPNOW_NO_MEM) {
155. Serial.println("Out of memory");
156. return false;
157. } else if (addStatus == ESP_ERR_ESPNOW_EXIST) {
158. Serial.println("Peer Exists");
159. return true;
160. } else {
161. Serial.println("Not sure what happened");
162. return false;
163. }
164. }
165. } else {
166. // No slave found to process
167. Serial.println("No Slave found to process");
168. return false;
169. }
170. }
171.
172. void deletePeer() {
173. esp_err_t delStatus = esp_now_del_peer(slave.peer_addr);
174. Serial.print("Slave Delete Status: ");
175. if (delStatus == ESP_OK) {
176. // Delete success
177. Serial.println("Success");
178. } else if (delStatus == ESP_ERR_ESPNOW_NOT_INIT) {
179. // How did we get so far!!
180. Serial.println("ESPNOW Not Init");
181. } else if (delStatus == ESP_ERR_ESPNOW_ARG) {
182. Serial.println("Invalid Argument");

189

183. } else if (delStatus == ESP_ERR_ESPNOW_NOT_FOUND) {
184. Serial.println("Peer not found.");
185. } else {
186. Serial.println("Not sure what happened");
187. }
188. }
189.
190. // send data
191. void sendData() {
192.
193. const uint8_t *peer_addr = slave.peer_addr;
194. Serial.print("Sending"); //Serial.println(dataToSend);
195. esp_err_t result = esp_now_send(peer_addr, (uint8_t *)&dataToSend, sizeof(dataToSend));
196. Serial.print("Send Status: ");
197. if (result == ESP_OK) {
198. Serial.println("Success");
199. } else if (result == ESP_ERR_ESPNOW_NOT_INIT) {
200. // How did we get so far!!
201. Serial.println("ESPNOW not Init.");
202. } else if (result == ESP_ERR_ESPNOW_ARG) {
203. Serial.println("Invalid Argument");
204. } else if (result == ESP_ERR_ESPNOW_INTERNAL) {
205. Serial.println("Internal Error");
206. } else if (result == ESP_ERR_ESPNOW_NO_MEM) {
207. Serial.println("ESP_ERR_ESPNOW_NO_MEM");
208. } else if (result == ESP_ERR_ESPNOW_NOT_FOUND) {
209. Serial.println("Peer not found.");
210. } else {
211. Serial.println("Not sure what happened");
212. }
213.
214. if (digitalRead(buttonPin) == LOW)
215. {
216. dataToSend.redscore++;
217. }
218. if (digitalRead(buttonPin) == LOW)
219. {
220. dataToSend.bluescore++;
221. }
222. //dataToSend.redscore++;
223. //dataToSend.bluescore++;
224. }
225.
226. // callback when data is sent from Master to Slave
227. void OnDataSent(const uint8_t *mac_addr, esp_now_send_status_t status) {
228. char macStr[18];
229. snprintf(macStr, sizeof(macStr), "%02x:%02x:%02x:%02x:%02x:%02x",
230. mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], mac_addr[4], mac_addr[5]);
231. Serial.print("Last Packet Sent to: "); Serial.println(macStr);
232. Serial.print("Last Packet Send Status: "); Serial.println(status == ESP_NOW_SEND_SUCCESS ?
"Delivery Success" : "Delivery Fail");
233. }
234.
235. void loop() {
236. // In the loop we scan for slave
237. ScanForSlave();
238. // If Slave is found, it would be populate in `slave` variable
239. // We will check if `slave` is defined and then we proceed further
240. if (slave.channel == CHANNEL) { // check if slave channel is defined
241. // `slave` is defined
242. // Add slave as peer if it has not been added already
243. bool isPaired = manageSlave();
244. if (isPaired) {
245. // pair success or already paired
246. // Send data to device

190

247. sendData();
248. } else {
249. // slave pair failed
250. Serial.println("Slave pair failed!");
251. }
252. }
253. else {
254. // No slave found to process
255. }
256.
257. // wait for 1 second to run the logic again
258. delay(5000);
259. }
260.

Appendix I: Secondary Communication Code

 1. #include <esp_now.h>
 2. #include <WiFi.h>
 3.
 4. #define CHANNEL 1
 5.
 6. int receivedValue1;
 7. int receivedValue2;
 8.
 9. // Init ESP Now with fallback
10. void InitESPNow() {
11. WiFi.disconnect();
12. if (esp_now_init() == ESP_OK) {
13. Serial.println("ESPNow Init Success");
14. }
15. else {
16. Serial.println("ESPNow Init Failed");
17. // Retry InitESPNow, add a counte and then restart?
18. // InitESPNow();
19. // or Simply Restart
20. ESP.restart();
21. }
22. }
23.
24. // config AP SSID
25. void configDeviceAP() {
26. const char *SSID = "Slave_1";
27. bool result = WiFi.softAP(SSID, "Slave_1_Password", CHANNEL, 0);
28. if (!result) {
29. Serial.println("AP Config failed.");
30. } else {
31. Serial.println("AP Config Success. Broadcasting with AP: " + String(SSID));
32. Serial.print("AP CHANNEL "); Serial.println(WiFi.channel());
33. }
34. }
35.
36. void setup() {
37. Serial.begin(115200);
38. Serial.println("ESPNow/Basic/Slave Example");
39. //Set device in AP mode to begin with
40. WiFi.mode(WIFI_AP);
41. // configure device AP mode
42. configDeviceAP();

191

43. // This is the mac address of the Slave in AP Mode
44. Serial.print("AP MAC: "); Serial.println(WiFi.softAPmacAddress());
45. // Init ESPNow with a fallback logic
46. InitESPNow();
47. // Once ESPNow is successfully Init, we will register for recv CB to
48. // get recv packer info.
49. esp_now_register_recv_cb(OnDataRecv);
50. }
51.
52. struct DataPacket {
53. int value1;
54. int value2;
55. };
56.
57. // callback when data is recv from Master
58. void OnDataRecv(const uint8_t *mac_addr, const uint8_t *data, int data_len) {
59. char macStr[18];
60. snprintf(macStr, sizeof(macStr), "%02x:%02x:%02x:%02x:%02x:%02x",
61. mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], mac_addr[4], mac_addr[5]);
62. Serial.print("Last Packet Recv from: "); Serial.println(macStr);
63. //Serial.print("Last Packet Recv Data: "); Serial.println(*data);
64. Serial.println("");
65. DataPacket* packet = (DataPacket*)data;
66. int receivedValue1 = packet->value1;
67. int receivedValue2 = packet->value2;
68.
69.
70.
71. Serial.print("Red Score is ");
72. Serial.println(receivedValue1);
73. Serial.print("Blue Score is ");
74. Serial.println(receivedValue2);
75.
76. if(receivedValue1 >= 21)
77. {
78. Serial.print("Red team Wins");
79. }
80.
81. if(receivedValue2 >= 21)
82. {
83. Serial.print("Blue team Wins");
84. }
85.
86. }
87.
88.
89.
90. void loop() {
91. // Chill
92.
93. }
94.

Appendix J: Gameplay Code

 1. // Test values were added to progress the gameplay
 2.
 3. #include <Wire.h>

192

 4. #include <PWFusion_TCA9548A.h>
 5. #include "Adafruit_TCS34725.h"
 6. #include <math.h>
 7. #include <esp_now.h>
 8. #include <WiFi.h>
 9. #include <esp_wifi.h> // only for esp_wifi_set_channel()
 10. #include <GxEPD.h>
 11. #include <GxGDEW042T2/GxGDEW042T2.h> // 4.2" b/w
 12. #include <Fonts/FreeMonoBold24pt7b.h>
 13. #include <GxIO/GxIO_SPI/GxIO_SPI.h>
 14. #include <GxIO/GxIO.h>
 15.
 16. // Global copy of slave
 17. esp_now_peer_info_t slave;
 18. #define CHANNEL 1
 19. #define PRINTSCANRESULTS 0
 20. #define DELETEBEFOREPAIR 0
 21.
 22. //pressure sensor pins
 23. #define Q1 26
 24. #define Q2 27
 25. #define Q3 14
 26. #define Q4 12
 27.
 28. #define PWR1 39
 29. #define PWR2 34
 30. #define PWR3 35
 31. #define PWR4 32
 32. #define on HIGH
 33. #define off LOW
 34.
 35. int Q1zero; int Q2zero; int Q3zero; int Q4zero;
 36. int Q1val; int Q2val; int Q3val; int Q4val;
 37. int Q5val; int Q6val; int Q7val; int Q8val;
 38. int Q9val; int Q10val; int Q11val; int Q12val;
 39. int Q13val; int Q14val; int Q15val; int Q16val;
 40. int Q17val; int Q18val; int Q19val; int Q20val;
 41. int Q21val; int Q22val; int Q23val; int Q24val;
 42. int Q25val; int Q26val; int Q27val; int Q28val;
 43. int Q29val; int Q30val; int Q31val; int Q32val;
 44. int Q1diff; int Q2diff; int Q3diff; int Q4diff; int bag1[4];
 45. int Q5diff; int Q6diff; int Q7diff; int Q8diff; int bag2[4];
 46. int Q9diff; int Q10diff; int Q11diff; int Q12diff; int bag3[4];
 47. int Q13diff; int Q14diff; int Q15diff; int Q16diff; int bag4[4];
 48. int Q17diff; int Q18diff; int Q19diff; int Q20diff; int bag5[4];
 49. int Q21diff; int Q22diff; int Q23diff; int Q24diff; int bag6[4];
 50. int Q25diff; int Q26diff; int Q27diff; int Q28diff; int bag7[4];
 51. int Q29diff; int Q30diff; int Q31diff; int Q32diff; int bag8[4];
 52. int minVal = 3000; int Turn = 1; int bagLocation;
 53. //u_int8_t round = 0;
 54. int bagsensedonboard = 0; int bagsensedinhole = 0;
 55. int p1, p2, p3, p4;
 56. int Team1Score = 0;
 57. int Team2Score = 0;
 58. int Team1ScoreCurrent = 0;
 59. int Team2ScoreCurrent = 0;
 60. const int buttonPin1 = 13;
 61. const int buttonPin2 = 33;
 62.
 63. struct DataPacket
 64. {
 65. int Team1Score;
 66. int Team2Score;
 67. };
 68.

193

 69. DataPacket dataToSend;
 70.
 71. void setup() {
 72. // put your setup code here, to run once:
 73. Serial.begin(9600);// begin comms. with serial monitor
 74. Serial.println("**");
 75. analogReadResolution(12);
 76. //pressure sensor read
 77. Serial.println("Clear the board for calibration.");
 78. delay(5000);
 79. //QUAD 1
 80. Q1val=analogRead(Q1);
 81. //QUAD 2
 82. Q2val=analogRead(Q2);
 83. //QUAD 3
 84. Q3val=analogRead(Q3);
 85. //QUAD 4
 86. Q4val=analogRead(Q4);
 87. //ensure all feet have contact
 88. while(1)//calibration loop
 89. {
 90. if(Q1val>minVal)
 91. {
 92. Serial.print("Add shim to foot in Quad 1.");
 93. while(1)
 94. {
 95. Q1val=analogRead(Q1);
 96. if(Q1val<minVal){break;}
 97. }//wait for user adjustment
 98. }//end if
 99. else{p1=1;}
100. if(Q2val>minVal)
101. {
102. Serial.print("Add shim to foot in Quad 2.");
103. while(1)
104. {
105. Q2val=analogRead(Q2);
106. if(Q2val<minVal){break;}
107. }//wait for user adjustment
108. }//end if
109. else{p2=1;}
110. if(Q3val>minVal)
111. {
112. Serial.print("Add shim to foot in Quad 3.");
113. while(1)
114. {
115. Q3val=analogRead(Q3);
116. if(Q3val<minVal){break;}
117. }//wait for user adjustment
118. }//end if
119. else{p3=1;}
120. if(Q4val>minVal)
121. {
122. Serial.print("Add shim to foot in Quad 4.");
123. while(1)
124. {
125. Q4val=analogRead(Q4);
126. if(Q4val<minVal){break;}
127. }//wait for user adjustment
128. }//end if
129. else{p4=1;}
130.
131. if((p1+p2+p3+p4)==4){break;}//leave calibration loop
132.
133. }//end calibration loop

194

134. Serial.println("out of loop");
135. //calibrate zeros
136. Q1zero=Q1val;
137. Q2zero=Q2val;
138. Q3zero=Q3val;
139. Q4zero=Q4val;
140.
141. Serial.println(Q1zero);
142. Serial.println(Q2zero);
143. Serial.println(Q3zero);
144. Serial.println(Q4zero);
145.
146. // Set button pins as inputs
147. pinMode(buttonPin1, INPUT);
148. pinMode(buttonPin2, INPUT);
149. }
150.
151. void pointcalculation()
152. {
153.
154. if (Team1ScoreCurrent > Team2ScoreCurrent)
155. {
156. Team1Score = Team1Score + Team1ScoreCurrent - Team2ScoreCurrent;
157. Team1ScoreCurrent = Team2ScoreCurrent = 0;
158. }
159. else if (Team1ScoreCurrent < Team2ScoreCurrent)
160. {
161. Team2Score = Team2Score + Team2ScoreCurrent - Team1ScoreCurrent;
162. Team1ScoreCurrent = Team2ScoreCurrent = 0;
163. }
164. else
165. {
166. Team1Score = Team1Score;
167. Team2Score = Team2Score;
168. Team1ScoreCurrent = Team2ScoreCurrent = 0;
169. }
170. }
171.
172. void endgame()
173. {
174. if (Team1Score >= 21 && Team2Score < 21)
175. {
176. Serial.println("Team 1 wins");
177. Team1Score = Team2Score = 0; //resets score
178. }
179. else if (Team2Score >= 21 && Team1Score < 21)
180. {
181. Serial.println("Team 2 wins");
182. Team1Score = Team2Score = 0; //resets score
183. }
184. }
185.
186. void loop() {
187. // put your main code here, to run repeatedly:
188. if(Turn==1)
189. {
190. //bag 1
191. if (digitalRead(buttonPin1) == HIGH)
192. {
193. digitalWrite(PWR1, on);
194. delay(250);
195. Q1val = analogRead(Q1);
196. digitalWrite(PWR1, off);
197. digitalWrite(PWR2, on);
198. delay(250);

195

199. Q2val = analogRead(Q2);
200. digitalWrite(PWR2, off);
201. digitalWrite(PWR3, on);
202. delay(250);
203. Q3val = analogRead(Q3);
204. digitalWrite(PWR3, off);
205. digitalWrite(PWR4, on);
206. delay(250);
207. Q4val = analogRead(Q4);
208. digitalWrite(PWR4, off);
209.
210. Q1diff = Q1val-Q1zero;
211. Q2diff = Q2val-Q2zero;
212. Q3diff = Q3val-Q3zero;
213. Q4diff = Q4val-Q4zero;
214.
215. bag1[1] = Q1diff; //bag 1 location
216. bag1[2] = Q2diff;
217. bag1[3] = Q3diff;
218. bag1[4] = Q4diff;
219.
220. if(Q1diff<Q2diff && Q1diff<Q3diff && Q1diff<Q4diff)
221. {
222. bagLocation=3;
223. bagsensedonboard = 1;
224. // Turn on quad 3 color sensor mux
225. }//end if
226. else if(Q2diff<Q1diff && Q2diff<Q3diff && Q2diff<Q4diff)
227. {
228. bagLocation=4;
229. bagsensedonboard = 1;
230. // Turn on quad 4 color sensor mux
231. }//end else if
232. else if(Q3diff<Q1diff && Q3diff<Q2diff && Q3diff<Q4diff)
233. {
234. bagLocation=1;
235. bagsensedonboard = 1;
236. // Turn on quad 1 color sensor mux
237. }//end else if
238. else if(Q4diff<Q1diff && Q4diff<Q2diff && Q4diff<Q3diff)
239. {
240. bagLocation=2;
241. bagsensedonboard = 1;
242. // Turn on quad 2 color sensor mux
243. }//end else if
244. else
245. {
246. bagsensedonboard = 0;
247. }
248.
249. if (bagsensedonboard == 1)
250. {
251. Team1ScoreCurrent = Team1ScoreCurrent + 1;
252. }
253. else if (bagsensedinhole == 1)
254. {
255. Team1ScoreCurrent = Team1ScoreCurrent + 3;
256. }
257.
258. Team1ScoreCurrent = Team1ScoreCurrent+1;
259. Turn = Turn+1;
260. Serial.println(Q1diff);
261. Serial.println(Q2diff);
262. Serial.println(Q3diff);
263. Serial.println(Q4diff);

196

264. Serial.println(bagLocation);
265. Serial.println(Team1ScoreCurrent);
266. Serial.println("It is team 2 turn");
267. delay(500);
268. }
269.
270. }
271. //bag 2
272. if(Turn==2)
273. {
274. //bag 2
275. if(digitalRead(buttonPin2) == HIGH)
276. {
277. digitalWrite(PWR1, on);
278. delay(250);
279. Q5val = analogRead(Q1);
280. digitalWrite(PWR1, off);
281. digitalWrite(PWR2, on);
282. delay(250);
283. Q6val = analogRead(Q2);
284. digitalWrite(PWR2, off);
285. digitalWrite(PWR3, on);
286. delay(250);
287. Q7val = analogRead(Q3);
288. digitalWrite(PWR3, off);
289. digitalWrite(PWR4,on);
290. delay(250);
291. Q8val = analogRead(Q4);
292. digitalWrite(PWR4, off);
293.
294. Q5diff = Q5val-Q1val;
295. Q6diff = Q6val-Q2val;
296. Q7diff = Q7val-Q3val;
297. Q8diff = Q8val-Q4val;
298.
299. bag2[1] = Q5diff; //bag 2 location
300. bag2[2] = Q6diff;
301. bag2[3] = Q7diff;
302. bag2[4] = Q8diff;
303.
304. if(Q5diff<Q6diff && Q5diff<Q7diff && Q5diff<Q8diff)
305. {
306. bagLocation=3;
307. bagsensedonboard = 1;
308. }//end if
309. else if(Q6diff<Q5diff && Q6diff<Q7diff && Q6diff<Q8diff)
310. {
311. bagLocation=4;
312. bagsensedonboard = 1;
313. }//end else if
314. else if(Q7diff<Q5diff && Q7diff<Q6diff && Q7diff<Q8diff)
315. {
316. bagLocation=1;
317. bagsensedonboard = 1;
318. }//end else if
319. else if(Q8diff<Q5diff && Q8diff<Q6diff && Q8diff<Q7diff)
320. {
321. bagLocation=2;
322. bagsensedonboard = 1;
323. }//end else if
324. else
325. {
326. bagsensedonboard = 0;
327. }
328.

197

329. if (bagsensedonboard == 1)
330. {
331. Team2ScoreCurrent = Team2ScoreCurrent + 1;
332. }
333. else if (bagsensedinhole == 1)
334. {
335. Team2ScoreCurrent = Team2ScoreCurrent + 3;
336. }
337.
338. Turn = Turn+1;
339. Serial.println(Q5diff);
340. Serial.println(Q6diff);
341. Serial.println(Q7diff);
342. Serial.println(Q8diff);
343. Serial.println(bagLocation);
344. Serial.println(Team2ScoreCurrent);
345. Serial.println("It is team 1 turn");
346. delay(500);
347. }
348.
349. }
350. //bag 3
351. if(Turn==3)
352. {
353. //bag 3
354. if(digitalRead(buttonPin1) == HIGH)
355. {
356. digitalWrite(PWR1, on);
357. delay(250);
358. Q9val = analogRead(Q1);
359. digitalWrite(PWR1, off);
360. digitalWrite(PWR2, on);
361. delay(250);
362. Q10val = analogRead(Q2);
363. digitalWrite(PWR2, off);
364. digitalWrite(PWR3, on);
365. delay(250);
366. Q11val = analogRead(Q3);
367. digitalWrite(PWR3, off);
368. digitalWrite(PWR4, on);
369. delay(250);
370. Q12val = analogRead(Q4);
371. digitalWrite(PWR4, off);
372.
373. Q9diff = Q9val-Q5val;
374. Q10diff = Q10val-Q6val;
375. Q11diff = Q11val-Q7val;
376. Q12diff = Q12val-Q8val;
377.
378. bag3[1] = Q9diff; //bag 3 location
379. bag3[2] = Q10diff;
380. bag3[3] = Q11diff;
381. bag3[4] = Q12diff;
382.
383. if(Q9diff<Q10diff && Q9diff<Q11diff && Q9diff<Q12diff)
384. {
385. bagLocation=3;
386. bagsensedonboard = 1;
387. }//end if
388. else if(Q10diff<Q9diff && Q10diff<Q11diff && Q10diff<Q12diff)
389. {
390. bagLocation=4;
391. bagsensedonboard = 1;
392. }//end else if
393. else if(Q11diff<Q9diff && Q11diff<Q10diff && Q11diff<Q12diff)

198

394. {
395. bagLocation=1;
396. bagsensedonboard = 1;
397. }//end else if
398. else if(Q12diff<Q9diff && Q12diff<Q10diff && Q12diff<Q11diff)
399. {
400. bagLocation=2;
401. bagsensedonboard = 1;
402. }//end else if
403. else
404. {
405. bagsensedonboard = 0;
406. }
407.
408. if (bagsensedonboard == 1)
409. {
410. Team1ScoreCurrent = Team1ScoreCurrent + 1;
411. }
412. else if (bagsensedinhole == 1)
413. {
414. Team1ScoreCurrent = Team1ScoreCurrent + 3;
415. }
416. Team1ScoreCurrent = Team1ScoreCurrent+1;
417.
418. Turn = Turn+1;
419. Serial.println(bagLocation);
420. Serial.println(Team1ScoreCurrent);
421. Serial.println("It is team 2 turn");
422. delay(500);
423. }
424.
425. }
426. //bag 4
427. if(Turn==4)
428. {
429. //bag 4
430. if(digitalRead(buttonPin2) == HIGH)
431. {
432. digitalWrite(PWR1, on);
433. delay(250);
434. Q13val = analogRead(Q1);
435. digitalWrite(PWR1, off);
436. digitalWrite(PWR2, on);
437. delay(250);
438. Q14val = analogRead(Q2);
439. digitalWrite(PWR2, off);
440. digitalWrite(PWR3, on);
441. delay(250);
442. Q15val = analogRead(Q3);
443. digitalWrite(PWR3, off);
444. digitalWrite(PWR4, on);
445. delay(250);
446. Q16val = analogRead(Q4);
447. digitalWrite(PWR4, off);
448.
449. Q13diff = Q13val-Q9val;
450. Q14diff = Q14val-Q10val;
451. Q15diff = Q15val-Q11val;
452. Q16diff = Q16val-Q12val;
453.
454. bag4[1] = Q13diff; //bag 4 location
455. bag4[2] = Q14diff;
456. bag4[3] = Q15diff;
457. bag4[4] = Q16diff;
458.

199

459. if(Q13diff<Q14diff && Q13diff<Q15diff && Q13diff<Q16diff)
460. {
461. bagLocation=3;
462. bagsensedonboard = 1;
463. }//end if
464. else if(Q15diff<Q13diff && Q15diff<Q14diff && Q15diff<Q16diff)
465. {
466. bagLocation=4;
467. bagsensedonboard = 1;
468. }//end else if
469. else if(Q15diff<Q13diff && Q15diff<Q14diff && Q15diff<Q16diff)
470. {
471. bagLocation=1;
472. bagsensedonboard = 1;
473. }//end else if
474. else if(Q16diff<Q13diff && Q16diff<Q14diff && Q16diff<Q15diff)
475. {
476. bagLocation=2;
477. bagsensedonboard = 1;
478. }//end else if
479. else
480. {
481. bagsensedonboard = 0;
482. }
483.
484. if (bagsensedonboard == 1)
485. {
486. Team2ScoreCurrent = Team2ScoreCurrent + 1;
487. }
488. else if (bagsensedinhole == 1)
489. {
490. Team2ScoreCurrent = Team2ScoreCurrent + 3;
491. }
492.
493. Turn = Turn+1;
494. Serial.println(bagLocation);
495. Serial.println(Team2ScoreCurrent);
496. Serial.println("It is team 1 turn");
497. delay(500);
498. }
499.
500. }
501.
502. if(Turn==5)
503. {
504. //bag 5
505. if(digitalRead(buttonPin1) == HIGH)
506. {
507. digitalWrite(PWR1, on);
508. delay(250);
509. Q17val = analogRead(Q1);
510. digitalWrite(PWR1, off);
511. digitalWrite(PWR2, on);
512. delay(250);
513. Q18val = analogRead(Q2);
514. digitalWrite(PWR2, off);
515. digitalWrite(PWR3, on);
516. delay(250);
517. Q19val = analogRead(Q3);
518. digitalWrite(PWR3, off);
519. digitalWrite(PWR4, on);
520. delay(250);
521. Q20val = analogRead(Q4);
522. digitalWrite(PWR4, off);
523.

200

524. Q17diff = Q17val-Q13val; //-Q13Val?
525. Q18diff = Q18val-Q14val;
526. Q19diff = Q19val-Q15val;
527. Q20diff = Q20val-Q16val;
528.
529. bag5[1] = Q17diff; //bag 5 location
530. bag5[2] = Q18diff;
531. bag5[3] = Q19diff;
532. bag5[4] = Q20diff;
533.
534. if(Q17diff<Q18diff && Q17diff<Q19diff && Q17diff<Q20diff)
535. {
536. bagLocation=3;
537. bagsensedonboard = 1;
538. }//end if
539. else if(Q18diff<Q17diff && Q18diff<Q19diff && Q18diff<Q20diff)
540. {
541. bagLocation=4;
542. bagsensedonboard = 1;
543. }//end else if
544. else if(Q19diff<Q17diff && Q19diff<Q18diff && Q19diff<Q20diff)
545. {
546. bagLocation=1;
547. bagsensedonboard = 1;
548. }//end else if
549. else if(Q20diff<Q17diff && Q20diff<Q18diff && Q20diff<Q19diff)
550. {
551. bagLocation=2;
552. bagsensedonboard = 1;
553. }//end else if
554. else
555. {
556. bagsensedonboard = 0;
557. }
558.
559. if (bagsensedonboard == 1)
560. {
561. Team1ScoreCurrent = Team1ScoreCurrent + 1;
562. }
563. else if (bagsensedinhole == 1)
564. {
565. Team1ScoreCurrent = Team1ScoreCurrent + 3;
566. }
567.
568. Team1ScoreCurrent = Team1ScoreCurrent+1;
569. Turn = Turn+1;
570. Serial.println(bagLocation);
571. Serial.println(Team1ScoreCurrent);
572. Serial.println("It is team 2 turn");
573. delay(500);
574. }
575.
576. }
577.
578. if(Turn==6)
579. {
580. //bag 6
581. if(digitalRead(buttonPin2) == HIGH)
582. {
583. digitalWrite(PWR1, on);
584. delay(250);
585. Q21val = analogRead(Q1);
586. digitalWrite(PWR1, off);
587. digitalWrite(PWR2, on);
588. delay(250);

201

589. Q22val = analogRead(Q2);
590. digitalWrite(PWR2, off);
591. digitalWrite(PWR3, on);
592. delay(250);
593. Q23val = analogRead(Q3);
594. digitalWrite(PWR3, off);
595. digitalWrite(PWR4, on);
596. delay(250);
597. Q24val = analogRead(Q4);
598. digitalWrite(PWR4, off);
599.
600. Q21diff = Q21val-Q17val;
601. Q22diff = Q22val-Q18val;
602. Q23diff = Q23val-Q19val;
603. Q24diff = Q24val-Q20val;
604.
605. bag6[1] = Q21diff; //bag 6 location
606. bag6[2] = Q22diff;
607. bag6[3] = Q23diff;
608. bag6[4] = Q24diff;
609.
610. if(Q21diff<Q22diff && Q21diff<Q23diff && Q21diff<Q24diff)
611. {
612. bagLocation=3;
613. bagsensedonboard = 1;
614. }//end if
615. else if(Q22diff<Q21diff && Q22diff<Q23diff && Q22diff<Q24diff)
616. {
617. bagLocation=4;
618. bagsensedonboard = 1;
619. }//end else if
620. else if(Q23diff<Q21diff && Q23diff<Q2diff && Q23diff<Q24diff)
621. {
622. bagLocation=1;
623. bagsensedonboard = 1;
624. }//end else if
625. else if(Q24diff<Q21diff && Q24diff<Q22diff && Q24diff<Q23diff)
626. {
627. bagLocation=2;
628. bagsensedonboard = 1;
629. }//end else if
630. else
631. {
632. bagsensedonboard = 0;
633. }
634.
635. if (bagsensedonboard == 1)
636. {
637. Team2ScoreCurrent = Team2ScoreCurrent + 1;
638. }
639. else if (bagsensedinhole == 1)
640. {
641. Team2ScoreCurrent = Team2ScoreCurrent + 3;
642. }
643.
644. Turn = Turn+1;
645. Serial.println(bagLocation);
646. Serial.println(Team2ScoreCurrent);
647. Serial.println("It is team 1 turn");
648. delay(500);
649. }
650.
651. }
652.
653. if(Turn==7)

202

654. {
655. //bag 7
656. if(digitalRead(buttonPin1) == HIGH)
657. {
658. digitalWrite(PWR1, on);
659. delay(250);
660. Q25val = analogRead(Q1);
661. digitalWrite(PWR1, off);
662. digitalWrite(PWR2, on);
663. delay(250);
664. Q26val = analogRead(Q2);
665. digitalWrite(PWR2, off);
666. digitalWrite(PWR3, on);
667. delay(250);
668. Q27val = analogRead(Q3);
669. digitalWrite(PWR3, off);
670. digitalWrite(PWR4, on);
671. delay(250);
672. Q28val = analogRead(Q4);
673. digitalWrite(PWR4, off);
674.
675. Q25diff = Q25val-Q21val;
676. Q26diff = Q26val-Q22val;
677. Q27diff = Q27val-Q23val;
678. Q28diff = Q28val-Q24val;
679.
680. bag7[1] = Q25diff; //bag 7 location
681. bag7[2] = Q26diff;
682. bag7[3] = Q27diff;
683. bag7[4] = Q28diff;
684.
685. if(Q25diff<Q26diff && Q25diff<Q27diff && Q25diff<Q28diff)
686. {
687. bagLocation=3;
688. bagsensedonboard = 1;
689. }//end if
690. else if(Q26diff<Q25diff && Q26diff<Q27diff && Q26diff<Q28diff)
691. {
692. bagLocation=4;
693. bagsensedonboard = 1;
694. }//end else if
695. else if(Q27diff<Q25diff && Q27diff<Q26diff && Q27diff<Q28diff)
696. {
697. bagLocation=1;
698. bagsensedonboard = 1;
699. }//end else if
700. else if(Q28diff<Q25diff && Q28diff<Q26diff && Q28diff<Q27diff)
701. {
702. bagLocation=2;
703. bagsensedonboard = 1;
704. }//end else if
705. else
706. {
707. bagsensedonboard = 0;
708. }
709.
710. if (bagsensedonboard == 1)
711. {
712. Team1ScoreCurrent = Team1ScoreCurrent + 1;
713. }
714. else if (bagsensedinhole == 1)
715. {
716. Team1ScoreCurrent = Team1ScoreCurrent + 3;
717. }
718.

203

719. Team1ScoreCurrent = Team1ScoreCurrent+1;
720. Turn = Turn+1;
721. Serial.println(bagLocation);
722. Serial.println(Team1ScoreCurrent);
723. Serial.println("It is team 2 turn");
724. delay(500);
725. }
726.
727. }
728.
729. if(Turn==8)
730. {
731. //bag 8
732. if(digitalRead(buttonPin2) == HIGH)
733. {
734. digitalWrite(PWR1, on);
735. delay(250);
736. Q29val = analogRead(Q1);
737. digitalWrite(PWR1, off);
738. digitalWrite(PWR2, on);
739. delay(250);
740. Q30val = analogRead(Q2);
741. digitalWrite(PWR2, off);
742. digitalWrite(PWR3, on);
743. delay(250);
744. Q31val = analogRead(Q3);
745. digitalWrite(PWR3, off);
746. digitalWrite(PWR4, on);
747. delay(250);
748. Q32val = analogRead(Q4);
749. digitalWrite(PWR4, off);
750.
751. Q29diff = Q29val-Q25val;
752. Q30diff = Q30val-Q26val;
753. Q31diff = Q31val-Q27val;
754. Q32diff = Q32val-Q28val;
755.
756. bag8[1] = Q29diff; //bag 4 location
757. bag8[2] = Q30diff;
758. bag8[3] = Q31diff;
759. bag8[4] = Q32diff;
760.
761. if(Q29diff<Q30diff && Q29diff<Q31diff && Q29diff<Q32diff)
762. {
763. bagLocation=3;
764. bagsensedonboard = 1;
765. }//end if
766. else if(Q30diff<Q29diff && Q30diff<Q31diff && Q30diff<Q32diff)
767. {
768. bagLocation=4;
769. bagsensedonboard = 1;
770. }//end else if
771. else if(Q31diff<Q29diff && Q31diff<Q30diff && Q31diff<Q32diff)
772. {
773. bagLocation=1;
774. bagsensedonboard = 1;
775. }//end else if
776. else if(Q32diff<Q29diff && Q32diff<Q30diff && Q32diff<Q31diff)
777. {
778. bagLocation=2;
779. bagsensedonboard = 1;
780. }//end else if
781. else
782. {
783. bagsensedonboard = 0;

204

784. }
785.
786. if (bagsensedonboard == 1)
787. {
788. Team2ScoreCurrent = Team2ScoreCurrent + 1;
789. }
790. else if (bagsensedinhole == 1)
791. {
792. Team2ScoreCurrent = Team2ScoreCurrent + 3;
793. }
794.
795. // round = round + 1;
796. Serial.println(bagLocation);
797. Serial.println(Team2ScoreCurrent);
798. Serial.println("End of round");
799. delay(500);
800.
801. }
802. pointcalculation();
803.
804. if(Turn==8)
805. {
806. //bag 7
807. if(digitalRead(buttonPin1) == HIGH)
808. {
809. Serial.print("Red teams score is "); Serial.println(Team1Score);
810. Serial.print("Blue teams score is "); Serial.println(Team2Score);
811.
812. scoreboard(Team1Score, Team2Score, &FreeMonoBold24pt7b);
813. scoreboardNumbers(Team1Score, Team2Score, &FreeMonoBold24pt7b);
814.
815. endgame();
816.
817. Turn = 1;
818. Serial.print(Turn);
819. }
820.
821. }
822. }
823. }
824.

Appendix K: Button Test

 1. /* ***
 2. Cornhole Board Button Test
 3. Summary:
 4. This code turns on and off the built-in LED when the button is pushed.
 5. Date: 11/25/23
 6. Name: Tim Desser
 7. ** */
 8. const int buttonPin = 33; // the number of the pushbutton pin
 9. const int ledPin = 2; // the number of the built-in LED pin
10.
11. // variables will change:
12. int buttonState = 0; // variable for reading the pushbutton status
13.
14. void setup() {
15. // initialize the LED pin as an output:
16. pinMode(ledPin, OUTPUT);

205

17. // initialize the pushbutton pin as an input:
18. pinMode(buttonPin, INPUT);
19. }
20.
21. void loop() {
22. // read the state of the pushbutton value:
23. buttonState = digitalRead(buttonPin);
24.
25. // check if the pushbutton is pressed. If it is, the buttonState is HIGH:
26. if (buttonState == HIGH) {
27. // turn LED on:
28. digitalWrite(ledPin, HIGH);
29. } else {
30. // turn LED off:
31. digitalWrite(ledPin, LOW);
32. }
33. }
34.

Appendix L: Single Color Sensor Test

 1. /* ***
 2. Color Sensor Single Test
 3. Summary:
 4. Uses MUX to find one color sensors
 5. Date: 11/21/23
 6. Name: Tim Desser
 7. ** */
 8.
 9. #include <Wire.h>
10. #include <PWFusion_TCA9548A.h>
11. #include "Adafruit_TCS34725.h"
12. #include <math.h>
13.
14.
15.
16.
17. // global variables
18. //color sensors
19. TCA9548A i2cMux;
20. Adafruit_TCS34725 tcs;//8-bit var
21. uint16_t red, green, blue, clear;//16-bit var
22.
23. void setup()
24. {
25. // Initialize I2C and Serial
26. Serial.begin(9600);// begin comms. with serial monitor
27. delay(5000);
28. Serial.println("**");
29.
30. Wire.begin();
31.
32. // contact/calibrate color sensors
33. // hole sensors
34. i2cMux.begin(0X72);
35. Serial.println("For Q3 MUX:");
36. i2cMux.setChannel(CHAN0);
37. delay(500);
38. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
39. Serial.println();
40. if (tcs.begin()) {

206

41. Serial.println("sensor 0 found");
42. } else {
43. Serial.println("No TCS34725 found for sensor 0");
44. }
45. tcs.getRawData(&red, &green, &blue, &clear);
46. Serial.println("setup");
47. Serial.print("red=");
48. Serial.println(red);
49. Serial.print("green=");
50. Serial.println(green);
51. Serial.print("blue=");
52. Serial.println(blue);
53. Serial.print("white=");
54. Serial.println(clear);
55. delay(5000);
56.
57. i2cMux.setChannel(CHAN_NONE);
58. //Wire.endTransmission();
59. Wire.end();
60. }//end void setup
61. void loop(){
62.
63. Wire.begin();
64. // contact/calibrate color sensors
65. // hole sensors
66. i2cMux.begin(0X72);
67.
68. // contact/calibrate color sensors
69. // hole sensors
70.
71. Serial.println("For Q3 MUX:");
72. i2cMux.setChannel(CHAN1);
73. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
74.
75. if (tcs.begin()) {
76. Serial.println("sensor 1 found");
77. } else {
78. Serial.println("No TCS34725 found for sensor 1");
79. }
80. tcs.getRawData(&red, &green, &blue, &clear);
81. Serial.print("red=");
82. Serial.println(red);
83. Serial.print("green=");
84. Serial.println(green);
85. Serial.print("blue=");
86. Serial.println(blue);
87. Serial.print("white=");
88. Serial.println(clear);
89. Serial.println();
90. delay(5000);
91.
92.
93. }
94.

Appendix M: Multiple Color Sensors Test

 1. /* ***
 2. Color Sensor Find Test
 3. Summary:
 4. Uses MUX to find all color sensors
 5. Date: 11/21/23
 6. Name: Tim Desser
 7. ** */

207

 8.
 9. #include <Wire.h>
 10. #include <PWFusion_TCA9548A.h>
 11. #include "Adafruit_TCS34725.h"
 12. #include <math.h>
 13.
 14. //pressure sensor pins
 15. #define Qh 0x70
 16. #define Q1 0x71
 17. #define Q2 0x72
 18. #define Q3 0x73
 19. #define Q4 0x74
 20.
 21.
 22. // global variables
 23. //color sensors
 24. TCA9548A i2cMux;
 25. Adafruit_TCS34725 tcs;//8-bit var
 26. uint16_t red, green, blue, clear;//16-bit var
 27.
 28. void setup()
 29. {
 30. // Initialize I2C and Serial
 31. Serial.begin(9600);// begin comms. with serial monitor
 32. Serial.println("**");
 33.
 34. Wire.begin();
 35. delay(5000);
 36. //hole MUX off
 37. i2cMux.begin(0x70);
 38. i2cMux.setChannel(CHAN_NONE);
 39. //Q1 MUX off
 40. i2cMux.begin(0x71);
 41. i2cMux.setChannel(CHAN_NONE);
 42. //Q2 MUX off
 43. i2cMux.begin(0x72);
 44. i2cMux.setChannel(CHAN_NONE);
 45. //Q3 MUX off
 46. i2cMux.begin(0x73);
 47. i2cMux.setChannel(CHAN_NONE);
 48. //Q4 MUX off
 49. i2cMux.begin(0x74);
 50. i2cMux.setChannel(CHAN_NONE);
 51.
 52. // contact/calibrate color sensors
 53. // hole sensors
 54. i2cMux.begin(0x70);
 55. Serial.println("For Hole MUX:");
 56. i2cMux.setChannel(CHAN0);
 57. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
 58. Serial.println("\n");
 59. if (tcs.begin()) {
 60. Serial.println("sensor 0 found");
 61. } else {
 62. Serial.println("No TCS34725 color sensor found for sensor 0");
 63. }
 64. i2cMux.setChannel(CHAN1);
 65. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
 66. if (tcs.begin()) {
 67. Serial.println("sensor 1 found");
 68. } else {
 69. Serial.println("No TCS34725 color sensor found for sensor 1");
 70. }
 71. i2cMux.setChannel(CHAN7);
 72. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);

208

 73. if (tcs.begin()) {
 74. Serial.println("sensor 7 found");
 75. } else {
 76. Serial.println("No TCS34725 found color sensor found for sensor 7");
 77. }
 78. // //end hole MUX
 79.
 80. // //change to Q1 Mux
 81. i2cMux.setChannel(CHAN_NONE);
 82. i2cMux.begin(Q1);
 83. Serial.println("For Q1 MUX:");
 84.
 85. i2cMux.setChannel(CHAN0);
 86. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
 87. if (tcs.begin()) {
 88. Serial.println("sensor 0 found");
 89. } else {
 90. Serial.println("No TCS34725 color sensor found for sensor 0");
 91. }
 92. i2cMux.setChannel(CHAN1);
 93. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
 94. if (tcs.begin()) {
 95. Serial.println("sensor 1 found");
 96. } else {
 97. Serial.println("No TCS34725 color sensor found for sensor 1");
 98. }
 99. i2cMux.setChannel(CHAN2);
100. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
101. if (tcs.begin()) {
102. Serial.println("sensor 2 found");
103. } else {
104. Serial.println("No TCS34725 color sensor found for sensor 2");
105. }
106. i2cMux.setChannel(CHAN3);
107. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
108. if (tcs.begin()) {
109. Serial.println("sensor 3 found");
110. } else {
111. Serial.println("No TCS34725 color sensor found for sensor 3");
112. }
113. i2cMux.setChannel(CHAN4);
114. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
115. if (tcs.begin()) {
116. Serial.println("sensor 4 found");
117. } else {
118. Serial.println("No TCS34725 color sensor found for sensor 4");
119. }
120. i2cMux.setChannel(CHAN5);
121. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
122. if (tcs.begin()) {
123. Serial.println("sensor 5 found");
124. } else {
125. Serial.println("No TCS34725 color sensor found for sensor 5");
126. }
127. i2cMux.setChannel(CHAN6);
128. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
129. if (tcs.begin()) {
130. Serial.println("sensor 6 found");
131. } else {
132. Serial.println("No TCS34725 color sensor found for sensor 6");
133. }
134. i2cMux.setChannel(CHAN7);
135. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
136. if (tcs.begin()) {
137. Serial.println("sensor 7 found");

209

138. } else {
139. Serial.println("No TCS34725 color sensor found for sensor 7");
140. }
141. i2cMux.setChannel(CHAN_NONE);
142. //end Q1 MUX
143.
144. //change to Q2 Mux
145. i2cMux.setChannel(CHAN_NONE);
146. i2cMux.begin(Q2);
147. Serial.println("For Q2 MUX:");
148.
149. i2cMux.setChannel(CHAN0);
150. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
151. if (tcs.begin()) {
152. Serial.println("sensor 0 found");
153. } else {
154. Serial.println("No TCS34725 color sensor found for sensor 0");
155. }
156. i2cMux.setChannel(CHAN1);
157. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
158. if (tcs.begin()) {
159. Serial.println("sensor 1 found");
160. } else {
161. Serial.println("No TCS34725 color sensor found for sensor 1");
162. }
163. i2cMux.setChannel(CHAN2);
164. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
165. if (tcs.begin()) {
166. Serial.println("sensor 2 found");
167. } else {
168. Serial.println("No TCS34725 color sensor found for sensor 2");
169. }
170. i2cMux.setChannel(CHAN3);
171. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
172. if (tcs.begin()) {
173. Serial.println("sensor 3 found");
174. } else {
175. Serial.println("No TCS34725 color sensor found for sensor 3");
176. }
177. i2cMux.setChannel(CHAN4);
178. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
179. if (tcs.begin()) {
180. Serial.println("sensor 4 found");
181. } else {
182. Serial.println("No TCS34725 color sensor found for sensor 4");
183. }
184. i2cMux.setChannel(CHAN5);
185. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
186. if (tcs.begin()) {
187. Serial.println("sensor 5 found");
188. } else {
189. Serial.println("No TCS34725 color sensor found for sensor 5");
190. }
191. i2cMux.setChannel(CHAN6);
192. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
193. if (tcs.begin()) {
194. Serial.println("sensor 6 found");
195. } else {
196. Serial.println("No TCS34725 color sensor found for sensor 6");
197. }
198. i2cMux.setChannel(CHAN7);
199. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
200. if (tcs.begin()) {
201. Serial.println("sensor 7 found");
202. } else {

210

203. Serial.println("No TCS34725 color sensor found for sensor 7");
204. }
205. i2cMux.setChannel(CHAN_NONE);
206. //end Q2 MUX
207.
208. //change to Q3 Mux
209. i2cMux.setChannel(CHAN_NONE);
210. i2cMux.begin(0x73);
211. Serial.println("For Q3 MUX:");
212.
213. i2cMux.setChannel(CHAN0);
214. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
215. if (tcs.begin()) {
216. Serial.println("sensor 0 found");
217. } else {
218. Serial.println("No TCS34725 color sensor found for sensor 0");
219. }
220. i2cMux.setChannel(CHAN1);
221. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
222. if (tcs.begin()) {
223. Serial.println("sensor 1 found");
224. } else {
225. Serial.println("No TCS34725 color sensor found for sensor 1");
226. }
227. i2cMux.setChannel(CHAN2);
228. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
229. if (tcs.begin()) {
230. Serial.println("sensor 2 found");
231. } else {
232. Serial.println("No TCS34725 color sensor found for sensor 2");
233. }
234. i2cMux.setChannel(CHAN3);
235. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
236. if (tcs.begin()) {
237. Serial.println("sensor 3 found");
238. } else {
239. Serial.println("No TCS34725 color sensor found for sensor 3");
240. }
241. i2cMux.setChannel(CHAN4);
242. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
243. if (tcs.begin()) {
244. Serial.println("sensor 4 found");
245. } else {
246. Serial.println("No TCS34725 color sensor found for sensor 4");
247. }
248. i2cMux.setChannel(CHAN5);
249. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
250. if (tcs.begin()) {
251. Serial.println("sensor 5 found");
252. } else {
253. Serial.println("No TCS34725 color sensor found for sensor 5");
254. }
255. i2cMux.setChannel(CHAN6);
256. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
257. if (tcs.begin()) {
258. Serial.println("sensor 6 found");
259. } else {
260. Serial.println("No TCS34725 color sensor found for sensor 6");
261. }
262. i2cMux.setChannel(CHAN7);
263. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
264. if (tcs.begin()) {
265. Serial.println("sensor 7 found");
266. } else {
267. Serial.println("No TCS34725 color sensor found for sensor 7");

211

268. }
269. i2cMux.setChannel(CHAN_NONE);
270. end Q3 MUX
271.
272. //change to Q4 Mux
273. i2cMux.setChannel(CHAN_NONE);
274. i2cMux.begin(Q4);
275. Serial.println("For Q4 MUX:");
276.
277. i2cMux.setChannel(CHAN0);
278. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
279. if (tcs.begin()) {
280. Serial.println("sensor 0 found");
281. } else {
282. Serial.println("No TCS34725 color sensor found for sensor 0");
283. }
284. i2cMux.setChannel(CHAN1);
285. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
286. if (tcs.begin()) {
287. Serial.println("sensor 1 found");
288. } else {
289. Serial.println("No TCS34725 color sensor found for sensor 1");
290. }
291. i2cMux.setChannel(CHAN2);
292. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
293. if (tcs.begin()) {
294. Serial.println("sensor 2 found");
295. } else {
296. Serial.println("No TCS34725 color sensor found for sensor 2");
297. }
298. i2cMux.setChannel(CHAN3);
299. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
300. if (tcs.begin()) {
301. Serial.println("sensor 3 found");
302. } else {
303. Serial.println("No TCS34725 color sensor found for sensor 3");
304. }
305. i2cMux.setChannel(CHAN4);
306. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
307. if (tcs.begin()) {
308. Serial.println("sensor 4 found");
309. } else {
310. Serial.println("No TCS34725 color sensor found for sensor 4");
311. }
312. i2cMux.setChannel(CHAN5);
313. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
314. if (tcs.begin()) {
315. Serial.println("sensor 5 found");
316. } else {
317. Serial.println("No TCS34725 color sensor found for sensor 5");
318. }
319. i2cMux.setChannel(CHAN6);
320. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
321. if (tcs.begin()) {
322. Serial.println("sensor 6 found");
323. } else {
324. Serial.println("No TCS34725 color sensor found for sensor 6");
325. }
326. i2cMux.setChannel(CHAN7);
327. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
328. if (tcs.begin()) {
329. Serial.println("sensor 7 found");
330. } else {
331. Serial.println("No TCS34725 color sensor found for sensor 7");
332. }

212

333. i2cMux.setChannel(CHAN_NONE);
334. //end Q4 MUX
335.
336. i2cMux.setChannel(CHAN_NONE);
337. //Wire.endTransmission();
338. Wire.end();
339. }//end void setup
340. void loop(){}
341.
342.

Appendix N: Pressure Sensors Test

 1. // Pressure sensor testing
 2.
 3. #include <Wire.h>
 4. #include <PWFusion_TCA9548A.h>
 5. #include "Adafruit_TCS34725.h"
 6. #include <math.h>
 7. #include <esp_now.h>
 8. #include <WiFi.h>
 9. #include <esp_wifi.h> // only for esp_wifi_set_channel()
 10. #include <GxEPD.h>
 11. #include <GxGDEW042T2/GxGDEW042T2.h> // 4.2" b/w
 12. #include <Fonts/FreeMonoBold24pt7b.h>
 13. #include <GxIO/GxIO_SPI/GxIO_SPI.h>
 14. #include <GxIO/GxIO.h>
 15.
 16. // Global copy of slave
 17. esp_now_peer_info_t slave;
 18. #define CHANNEL 1
 19. #define PRINTSCANRESULTS 0
 20. #define DELETEBEFOREPAIR 0
 21.
 22. //pressure sensor pins
 23. #define Q1 26
 24. #define Q2 27
 25. #define Q3 14
 26. #define Q4 12
 27.
 28. #define PWR1 39
 29. #define PWR2 34
 30. #define PWR3 35
 31. #define PWR4 32
 32. #define on HIGH
 33. #define off LOW
 34. int Q1zero; int Q2zero; int Q3zero; int Q4zero;
 35. int Q1val; int Q2val; int Q3val; int Q4val;
 36. int Q1diff; int Q2diff; int Q3diff; int Q4diff; int bag1[4];
 37. int p1, p2, p3, p4;
 38. int Team1Score = 0;
 39. int Team2Score = 0;
 40. int Team1ScoreCurrent = 0;
 41. int Team2ScoreCurrent = 0;
 42. const int buttonPin1 = 13;
 43. const int buttonPin2 = 33;
 44.
 45. void setup() {
 46. // put your setup code here, to run once:
 47. Serial.begin(9600);// begin comms. with serial monitor

213

 48. Serial.println("**");
 49. analogReadResolution(12);
 50. //pressure sensor read
 51. Serial.println("Clear the board for calibration.");
 52. delay(5000);
 53. //QUAD 1
 54. Q1val=analogRead(Q1);
 55. //QUAD 2
 56. Q2val=analogRead(Q2);
 57. //QUAD 3
 58. Q3val=analogRead(Q3);
 59. //QUAD 4
 60. Q4val=analogRead(Q4);
 61. //ensure all feet have contact
 62. while(1)//calibration loop
 63. {
 64. if(Q1val>minVal)
 65. {
 66. Serial.print("Add shim to foot in Quad 1.");
 67. while(1)
 68. {
 69. Q1val=analogRead(Q1);
 70. if(Q1val<minVal){break;}
 71. }//wait for user adjustment
 72. }//end if
 73. else{p1=1;}
 74. if(Q2val>minVal)
 75. {
 76. Serial.print("Add shim to foot in Quad 2.");
 77. while(1)
 78. {
 79. Q2val=analogRead(Q2);
 80. if(Q2val<minVal){break;}
 81. }//wait for user adjustment
 82. }//end if
 83. else{p2=1;}
 84. if(Q3val>minVal)
 85. {
 86. Serial.print("Add shim to foot in Quad 3.");
 87. while(1)
 88. {
 89. Q3val=analogRead(Q3);
 90. if(Q3val<minVal){break;}
 91. }//wait for user adjustment
 92. }//end if
 93. else{p3=1;}
 94. if(Q4val>minVal)
 95. {
 96. Serial.print("Add shim to foot in Quad 4.");
 97. while(1)
 98. {
 99. Q4val=analogRead(Q4);
100. if(Q4val<minVal){break;}
101. }//wait for user adjustment
102. }//end if
103. else{p4=1;}
104.
105. if((p1+p2+p3+p4)==4){break;}//leave calibration loop
106.
107. }//end calibration loop
108. Serial.println("out of loop");
109. //calibrate zeros
110. Q1zero=Q1val;
111. Q2zero=Q2val;
112. Q3zero=Q3val;

214

113. Q4zero=Q4val;
114.
115. Serial.println(Q1zero);
116. Serial.println(Q2zero);
117. Serial.println(Q3zero);
118. Serial.println(Q4zero);
119.
120. // Set button pins as inputs
121. pinMode(buttonPin1, INPUT);
122. pinMode(buttonPin2, INPUT);
123. }
124.
125. void loop() {
126. // put your main code here, to run repeatedly:
127. if(Turn==1)
128. {
129. //bag 1
130. if (digitalRead(buttonPin1) == HIGH)
131. {
132. digitalWrite(PWR1, on);
133. delay(250);
134. Q1val = analogRead(Q1);
135. digitalWrite(PWR1, off);
136. digitalWrite(PWR2, on);
137. delay(250);
138. Q2val = analogRead(Q2);
139. digitalWrite(PWR2, off);
140. digitalWrite(PWR3, on);
141. delay(250);
142. Q3val = analogRead(Q3);
143. digitalWrite(PWR3, off);
144. digitalWrite(PWR4, on);
145. delay(250);
146. Q4val = analogRead(Q4);
147. digitalWrite(PWR4, off);
148.
149. Q1diff = Q1val-Q1zero;
150. Q2diff = Q2val-Q2zero;
151. Q3diff = Q3val-Q3zero;
152. Q4diff = Q4val-Q4zero;
153.
154. bag1[1] = Q1diff; //bag 1 location
155. bag1[2] = Q2diff;
156. bag1[3] = Q3diff;
157. bag1[4] = Q4diff;
158.
159. if(Q1diff<Q2diff && Q1diff<Q3diff && Q1diff<Q4diff)
160. {
161. bagLocation=3;
162. bagsensedonboard = 1;
163. // Turn on quad 3 color sensor mux
164. }//end if
165. else if(Q2diff<Q1diff && Q2diff<Q3diff && Q2diff<Q4diff)
166. {
167. bagLocation=4;
168. bagsensedonboard = 1;
169. // Turn on quad 4 color sensor mux
170. }//end else if
171. else if(Q3diff<Q1diff && Q3diff<Q2diff && Q3diff<Q4diff)
172. {
173. bagLocation=1;
174. bagsensedonboard = 1;
175. // Turn on quad 1 color sensor mux
176. }//end else if
177. else if(Q4diff<Q1diff && Q4diff<Q2diff && Q4diff<Q3diff)

215

178. {
179. bagLocation=2;
180. bagsensedonboard = 1;
181. // Turn on quad 2 color sensor mux
182. }//end else if
183. else
184. {
185. bagsensedonboard = 0;
186. }
187.
188. if (bagsensedonboard == 1)
189. {
190. Team1ScoreCurrent = Team1ScoreCurrent + 1;
191. }
192. else if (bagsensedinhole == 1)
193. {
194. Team1ScoreCurrent = Team1ScoreCurrent + 3;
195. }
196.
197. Serial.println(Q1diff);
198. Serial.println(Q2diff);
199. Serial.println(Q3diff);
200. Serial.println(Q4diff);
201. }
202.

Appendix O: LED On/Off Test

 1. /* ***
 2. Cornhole Board LED on/off Test
 3. Summary:
 4. This code turns on and off the LED back lights.
 5. Date: 11/25/23
 6. Name: Tim Desser
 7. ** */
 8.
 9. #define on HIGH
10. #define off LOW
11. void setup() {
12.
13. pinMode(LED, OUTPUT);
14. }
15.
16.
17. void loop() {
18. digitalWrite(LED, on);
19. delay(5000);
20. digitalWrite(LED, off);
21. delay(1000);
22. }
23.

Appendix P: LED PWM Test

 1. /* ***
 2. Cornhole Board LED
 3. Summary:
 4. This code controls the LED lights on the cornhole board using a PWM signal.
 5. Date: 11/25/23

216

 6. Name: Tim Desser
 7. ** */
 8. #include "ESP32_FastPWM.h"
 9. #define LED 15
10. int PWM_resolution = 12;
11. //creates pwm instance
12. ESP32_FAST_PWM* PWM_Instance;
13.
14. float frequency = 1000.0f;
15. float dutyCycle = 0.0f;
16. int del = 20;
17. uint8_t channel = 0;
18.
19. void setup()
20. {
21. //assigns PWM frequency of 1.0 KHz and a duty cycle of 0%, channel 0, 12-bit resolution
22. PWM_Instance = new ESP32_FAST_PWM(LED, frequency, dutyCycle, channel, PWM_resolution);
23. }
24.
25. void loop()
26. {
27. for(int i=0;i<100;i++)
28. {
29. PWM_Instance->setPWM(LED, frequency, i);
30. delay(del);
31. }
32. for(int i=100;i>0;i--)
33. {
34. PWM_Instance->setPWM(LED, frequency, i);
35. delay(del);
36. }
37.
38. // PWM_Instance->setPWM(LED, frequency, 90);
39. // delay(del);
40. // PWM_Instance->setPWM(LED, frequency, 10);
41. // delay(del);
42.
43. }
44.

Appendix Q: Solenoid Test

 1. /* ***
 2. Cornhole Board Solenoid Test
 3. Summary:
 4. This code controls the solenoid for the hole door.
 5. Date: 11/25/23
 6. Name: Tim Desser
 7. ** */
 8. #define sol 2
 9. #define on HIGH
10. #define off LOW
11. void setup() {
12.
13. pinMode(sol, OUTPUT);
14. }
15.
16.
17. void loop() {
18. digitalWrite(sol, on);
19. delay(250);
20. digitalWrite(sol, off);
21. delay(10000);
22. }

217

23.

Appendix R: Display Test

 1. /* ***
 2. Cornhole Board display Test
 3. Summary:
 4. This code displays two different fonts and creates dividing lines.
 5. Date: 11/25/23
 6. Name: Tim Desser
 7. ** */
 8. //** First, install the GxEPD libray and move custom fonts to the fonts folder.
 9. #include <GxEPD.h>
10. #include <GxGDEW042T2/GxGDEW042T2.h> // 4.2" b/w
11. #include <Fonts/Nokora_Bold_100.h>
12. #include <Fonts/FreeMonoBold24pt7b.h>
13. #include <GxIO/GxIO_SPI/GxIO_SPI.h>
14. #include <GxIO/GxIO.h>
15.
16. GxIO_Class io(SPI, /*CS=5*/ SS, /*DC=*/ 17, /*RST=*/ 16); // arbitrary selection of 17, 16
17. GxEPD_Class display(io, /*RST=*/ 16, /*BUSY=*/ 4); // arbitrary selection of (16), 4
18. int RedScore=5;
19. int BlueScore=9;
20. void setup()
21. {
22. Serial.begin(115200);
23. Serial.println();
24. Serial.println("setup");
25. display.init(115200); // enable diagnostic output on Serial
26. Serial.println("setup done");
27. }
28.
29. void loop()
30. {
31. scoreboard(RedScore, BlueScore, &FreeMonoBold24pt7b);
32. scoreboardNumbers(RedScore, BlueScore, &Nokora_Bold_100);
33. delay(30000);
34. RedScore++;
35. BlueScore++;
36. }
37.
38. void scoreboard(int redScore, int blueScore , const GFXfont* f)
39. {
40. display.fillScreen(GxEPD_WHITE);
41. display.setTextColor(GxEPD_BLACK);
42. display.setFont(f);
43. display.setCursor(5, 60);
44. display.print("CORNHOLE");
45. display.setCursor(30, 130);
46. display.print("RED");
47. display.setCursor(240, 130);
48. display.print("BLUE");
49.
50. // draw lines
51. display.fillRect(0, 70, 400, 4, GxEPD_BLACK);
52. display.fillRect(198, 70, 4, 230, GxEPD_BLACK);
53.
54.
55. }
56.
57. void scoreboardNumbers(int redScore, int blueScore , const GFXfont* f)
58. {
59. //display.fillScreen(GxEPD_WHITE);
60. //display.setTextColor(GxEPD_BLACK);

218

61. display.setFont(f);
62. // display.setCursor(5, 60);
63. // display.print("CORNHOLE");
64. // display.setCursor(30, 130);
65. // display.print("RED");
66. // display.setCursor(210, 130);
67. // display.print("BLUE");
68. if(redScore<=9){
69. display.setCursor(70, 250);}//end if
70. else{
71. display.setCursor(50, 250);}//end else
72. display.print(redScore);
73. if(blueScore<=9){
74. display.setCursor(270, 250);}//end if
75. else{
76. display.setCursor(250, 250);}//end else
77. display.print(blueScore);
78.
79. display.update();
80. //delay(1000);
81.
82. }
83.

