University of Southern Indiana
Pott College of Science, Engineering, and Education
Engineering Department

8600 University Boulevard
Evansville, Indiana 47712

Automatic Cornhole Scoring System

Tim Desser & Ethan Watson
ENGR 491 — Senior Design
Fall 2023

Acknowledgments

There is much acknowledgement to the University of Southern Indiana and the entire
engineering department for their hospitality and assistance in the pursuit of an electrical
engineering degree. Many thanks to Dr. Art Chlebowski for helping find answers to all our
questions about digital communication protocols and signal analysis. A special thanks to Dr.
Paul Kuban for letting the group pursue this project, Mrs. Jamie Curry for her assistance in
purchasing the parts and components for this project, and Steven Molinet and Derek Statz for

their help with sensor testing and data interpretation on the prototype board.

Abstract

The purpose of the project is to provide an automated cornhole scoring system to give a more
leisurely play as well as statistical analysis of play to the competitive players. This report
includes the history and evolution of cornhole, previous attempts to assist players in keeping
score, as well as the new project design to achieve the purpose previously stated. Parts and
components are listed as well as reasons they were chosen. A full-size board was designed using
3D modeling and a physical board was built. Components were assembled and installed on the
board. Components were tested using test code. Due to some components not operating as

expected, the gameplay code was not able to run on the completed board.

Table of Contents
ACKNOWIBAGMENTS. ...t bbbttt e ettt b b I
AADSTIACT ...ttt bbbt ii
TADIE OF CONENES ... bbb bbbttt se e \Y%
LI L0 L) o OSSR vii
Lo INEFOQUCTION ...ttt ettt nn e r e 1
LLLo HISEOIY oot b b bbbttt bttt 3
1.2, Game Play and SCOTNGeiueiiiiiieieieiieite sttt bbbttt 4
1.3, CUIMENTE SOIULIONS.uitieiiicieeeee ettt 4
IR T I |V - U 1 BTt [o ST SR 4
1.3.2. REMOLE SCOMNG .. eitiitiitiiiieiieiei ettt bbbttt e e bbb b 5
1.3.3. Auto-Scoring WIith RFID.......ccocoiiiiiiiiiiieceee e 6
1.3.4. Autoscoring with Image ReCOgNItioNc.cccveiiiiiiicie e 8
2. ODJECHIVE STAEMENTeciiiieie ettt e e re et e e e e s be e be e st e sreesreenee e 9
3. SPECITIC AMIS ...ttt bbb b bbbt bt ettt b bt eneene s 10
4. Requirements/CONSLrAINIS/BIC.oiiiiiiiieiee e 10
TR O To (TN 1o To oSS SSRSS 12
T o o] =T B DTS o[OSSR 16
6.1, DESIGN TUBA......e ettt 16
0.2, SYSIBIMIS. .ttt bbbt b e 17
B.2.1. SBINISOIS ...tttk b bbbt n e 18

6.2.2. IMICIOCONIIOIIEE ... 19

B.2.3. POWET ..ot 20
6.2.4. SCOMEDOAIT ..ottt 21

A €11 o = T 1o I B 1T T o PRSP 22
T 1 EArY DESIGNS ...t 22

T 11 VEISION Lottt ettt 23

T. 0.2 VEISION 2.ttt bbbttt b b n e an s 24

7.2, CUIrent BOArd DESION......uciieieiiesieeie ettt sttt ste et sbe et reesbeeneesneeneas 26
7.3, HOIE DESION ...ttt b e 28
7.4. Whole Board ASSEMDIYcoviiiiieeiie e e 29

8. COMMUNICAIONeiuiitiieiciiet ettt bbbttt b e ab e 30
8.1 WILhiN the BOAITooiiiiiiie e 30
8.2. Sensor t0 MICIOCONTIOIIEL ..o s 34
8.3, B0Ard t0 BOAIceiiiiiiiitisie e 35
TR =T 1 o OSSR 36
ST B o (0] (0] 1Y/ oL TSR 36
0.2, TESHING PIAN ..ot 42
L0, RESUIS. ottt bbb 42
10.1. ACCOMPLISNMENTS ... 43
10.2. ProbIems FaCeU..........coiiiiieee e 44
11, What Could be Changed? ... 44
12, PrOJECE PLANNINGiiiieiiiieii sttt sttt 45
12,1, Bl OF MAErIAlS....c..oviiiiiiccce s 45

12.2. I B NI ettt et e e e e e e e nnnnnnnnnnnnnnnns 47

Vi

13, CONCIUSION ...t b bbb bbb 47
RETEIEICES ...t e bbbt 48
Appendix A: Project TIMEIINEcoviiiieee s 50
Appendix B: ABET Outcome 2, Design Factor Considerationscc.coeevinereiniineinennenns 51
ApPPendiX C: TCS3472 DataSNEEL.........ccveiieiieeieciese ettt e e nneenee e 52
AppendixX D: SEN0296 DataShEeLcc.civeiieieiieie ettt nne e 79
Appendix E: ESP32 DAtaShEEL..........coiiiieieiee e 84
Appendix F: E-Ink Display DataShetccooiiiiiiiiiiieiee e 112
APPENTIX G: PrototyPe COUB.....ccueeiiciiecieeie ettt et e re e teenaesneenas 182
Appendix H: Primary Communication COUE...........cceiveiieiieiicse et 186
Appendix I: Secondary CommuniCation COUEcciiiiiiiiiiieiese e 190
Appendix J: GAMEPIAY COUE ..o 191
APPENAIX K BULION TEST.....eitiiiiitiiieiieieie ettt 204
Appendix L: Single Color SENSOT TESE........cviiiciiiie st 205
Appendix M: Multiple Color SENSOIS TESL......cuciiiiiiieie e 206
APPENTiX N: Pressure SENSOIS TEST......c.uiiiirieieieite sttt sbe e nne s 212
APPENTiX O: LED ON/OTT TESL......cuiitiiiiiiiiieieieeste et 215
APPENTIX P: LED PWIM TESLiiiiiciiciicie ettt sttt ettt e e ne s e nne et 215
AppendiX Q: SOIENOIA TESL.......ccieiicieci et be e reene e e sreeeeas 216

APPENTIX R: DISPIAY TEST....eueiiieeeiieite sttt bbb 217

vii

Table of Figures

Figure 1.1: Game Play [2]. ..o cveceeieiie ittt ettt sttt ettt ne e nneens 1
Figure 1.2: ACL Championship [2]coooiieiiiiiieieieie e 2
Figure 1.3: Early Cornhole DeSign [L]ccooeeieieieieiesie it 3
Figure 1.4: Manual Cornhole SCOreKeeper [4]coveiveieiieie et 5
Figure 1.5: LED ReMOte SCOMNG [2]...vvcveieerteeieiieiie ettt e ste e sne e nnae e 6
Figure 1.6: RFID SCOING [B]...ecueteteriiitiiiieieieiee ettt bbbttt 8
Figure 1.7: Image Recognition SCOMMNG [4]cveieieiiiiiiieeeee e 9
Figure 4.1: Universal Cornhole Board Dimensions [5]cccciveiiiiieiieiiiieseece s 11
Figure 6.1: 3D MOdel OF DESIONcuviiuieiiiie et re e 16
Figure 6.2: GamepPlay OVEIVIEW.........ccuviiuiiieiieciie sttt et ee st ta e te e e e e steenesneesneenee s 17
FIQUIE .37 SEND29B [7]....oovveeeveeeeeeoeeeeeeeseeeeseeeesseeeesseeseseeesseeeseseseeseeees s e seeseeseeeeesee s 18
FIQUIE 6.4 TCS3AT52 [2] ..eueeeeieiee sttt bbbttt 19
Figure 6.5: ESP32 PINOUL [7] ..cveeviiieiieie ettt sttt be e sneesae e 20
Figure 6.6: Lithium 10N Battery [3]ceooiiiiieeiece sttt 21
FIgure 6.7: E-INK QISPIAY.......coiiiiiiiic e 22
Figure 7.1: Board MOdel: VEISION Loiiiiiiiiiieieesie st 23
Figure 7.2: Board Model: Version 2 Half SECLIONcccoieiiiii i 24
Figure 7.3: Board MOUEL: VEISION 3......cvioieiieeie ettt sttt ste e esre e 26
Figure 7.4: Board Model: Version 3 Half SECtION ..o 27
FIQUIE 7.5: HOIE DESIGN ...ttt bbbttt 28
Figure 7.6: HOIE FIOW LOQIC.......c.uiiiiiiie ittt sttt 29
Figure 7.7: Physical Board DESIGNcoiviiiieiieccie ettt 29

Figure 8.1:
Figure 8.2:
Figure 8.3:
Figure 8.4:
Figure 8.5:
Figure 8.6:
Figure 8.7:
Figure 9.1:
Figure 9.2:
Figure 9.3:
Figure 9.4:
Figure 9.5:
Figure 9.6:
Figure 9.7:

Figure 9.8:

[2C MUItIPIEXEr DIAGIAMvviiiiciecie ettt sra e esreanee s 31
TCAISABA MUIIPIEXET ...ttt e e e e 32
Multiplexer Printed Circuit BOArd...........ccooiiiiiiiiiiieie e 32
Pressure Sensor Voltage DIVIAET ..o 33
LED CONrol CIFCUIT......cveuiiiiiiiicesiitees e 34
Intra-Integrated Circuit COMMUNICALIONc.oiveiieiie e 35
ESP-NOW PrOtOCOL.......cctiiiieiiieieseite e 36
Prototype Sensing Red Cornhole Bag.........ccovveieerieneiinenieeeee e 37
Pressure Sensor Values with No Bags on Board............cccccevveveiiccecic e 38
Pressure Sensor Values with Bag Located in Quadrant 1...........ccccceeveiiiieinenieennenn, 38
Pressure Sensor Values of Bag Located Between Quadrant 1 and Quadrant 2 39
Color Sensor Values with No Bag on the Board.............ccocevvviiininicnenc e 39
Color Sensor Values with Blue Bag Located in Quadrant L..........c.ccccecevivevveiieennenn, 40
Color Sensor Values with Red Bag Located in Quadrant L...........cccccoeevivieiieiieennenn, 41
Color Sensor Values with Red Bag Between Quadrant 1 and Quadrant 2 41

Cornhole Auto-Score Board

1. Introduction

Cornhole is a game played with two teams of two players. There are two boards with holes in
them and each team has 4 bags. One player from each team lineups next to each board. The team
that goes first is determined by a coin toss. From one board, one player from team A tosses a
bag. Then, one player from team B tosses a bag onto the same board until all 4 of each team’s
bags have been tossed. When all the bags have been thrown for that round, points are totaled.

The next round begins from the opposite board with the opposing partners taking turns tossing
their bags. [1]

Figure 1.1: Game Play [2]
During the upcoming of cornhole, professional leagues have been created for players that want to
play competitively. Some of these leagues are American Cornhole League (ACL), American
Cornhole Organization (ACO), and American Cornhole Association (ACA) are just a few of the

more well-known organizations.

In 2021, there were 1024 people competing in the ACL World Championship. The winner of the

tournament went home $10,000 richer.

Figure 1.2: ACL Championship [2]

Novice cornhole players may have complications when it comes to keeping the score of a match
with external stimuli distracting them at any given moment. Also, Professional players need a
way to accurately analyze their throws and the placement of their bags after a match to show
improvement or struggles that they are encountering. Automating the scorekeeping would

improve social interaction by limiting the disruption of conversation and mitigating confusion.

1.1. History
' '.'NY:‘".‘:- *GF ¥ b A TR ;‘“ "1".‘.‘:}_}“} ™ " - Bt
(No Model.) H. A. DE WINDT.
GAME APPARATUS FOR PLAYING PARLOR QUOITS.
No. 285,396. Patented Sept. 25, 1883.
i
A i
‘_ ‘ Z ////7////,/-",
7 //%/ /////‘///)’“
,////// |)|
nuu
e Dovvertor:
T iocenrs Kl Cotons ot et
PO e, By Soen Tlad
Allorneys.

Figure 1.3: Early Cornhole Design [1]

Cornhole has many origins because no one can narrow down the invention of the backyard game.
The most common stories of the origin involve many different areas. One origin involves a
farmer from Kentucky, Jebediah Mcgillicuddy. It was said he invented the game just for him and
his friends to play on his farm and just exploded in popularity with his townspeople. It is also
rumored that cornhole stemmed from a Native American game where they would fill an animal
bladder with dried beans or corn and throw them in a hole in the ground. Another origin is that a
German man, Matthias Kuepermann, saw kids throwing rocks in groundhog holes and he wanted
to make them a gift., so he filled burlap bags with corn that the kids could throw in a wooden box
that he constructed. The most official origin is a game technically called Parlor Quoits. Heyliger
de Windt got a patent for this game and his boards very closely resemble cornhole boards. Some

people consider this to be the earliest model of modern cornhole boards (1883). [1]

1.2. Game Play and Scoring

Cornhole has a universal scoring system with respect to the bags. A bag on the board amounts to
1 point. A bag that goes through the hole amounts to 3 points. It also involves a cancelation
method which will consider all the bags on the board and in the hole after one round and
cumulate the number of points and award the resulting amount to the team with the most points
in that round. [2] An easy example is if team 1 has one bag on the board and team 2 also has one
bag on the board, 0 points will be awarded. Another example is if team 1 makes one bag in the

hole and team 2 has one bag on the board, 2 points will be awarded to team 1.

There are two popular “modes” of cornhole played across the globe, bust or no bust. With the
bust mode, a team must get 21 points to win. If that team exceeds 21 points, they are reset back
down to 13 or 15 points, depending on that group’s preference. No bust is where the first team to

reach a score of 21 or more wins.

1.3. Current Solutions

There are several approaches to the cornhole scorekeeping problem. These breakdown into four
categories; manual scoring, remote scoring, auto-scoring with RFID, and auto-scoring with

image recognition. The most common examples are discussed below.

1.3.1. Manual Scoring

A simple approach to on-board scoring is to use friction or magnetic markers that are moved
manually after each round as seen Figure 1.4. This system allows players to keep track of the
score between rounds. It is easy to use and requires no external power. However, this requires

players to calculate the score and remember to change the score after each round. [3]

Figure 1.4: Manual Cornhole Scorekeeper [4]

1.3.2. Remote Scoring

A similar method to 1.3.1 is using a remote to keep track of the score. This involves a
remote control and an LED scoreboard. After each round, a player would need to
calculate the score of each round and input that number into the remote which will then
show up on the scoreboard. Although this takes the stress of remembering the game's
score, the player still needs to understand the game's scoring rules and input the correct

score. [2]

Figure 1.5: LED Remote Scoring [2]

1.3.3. Auto-Scoring with RFID

Some engineers have tried using radio frequency identification to make an auto-scoring cornhole
board. This system would use special tags inside the bags. The reader on the board, or in the

hole, would then read each bag’s unique tag upon arrival to identify a scoring value.

A team of electrical/computer engineers from the University of Central Florida made one
working board as a proof of concept using ultra-high frequency radio identification (UHF RFID).
They chose the ThingMagic Nano because it included UHF functionality and paired it with a
Sparkfun Simultaneous M6E reader. They reported that this system had low power requirements,

was fast to boot up, and could read 200 taps a second. Despite their success using the UHF

RFID, it was a significant portion of the project budget. Unfortunately, it seems like they were

not able to make a fully functional device [4].

A California Polytechnic State University team used the same UHF setup with the ThingMagic
MG6E reader. However, they chose to use a linear vertical polarized antenna to get better coverage
throughout the board. This choice came with the unintended consequence of only being able to
read the tags in a vertical orientation. They solved this by placing two tags in each bag at 90
degrees to each other to always get one to read. It is unclear what kind of long-term durability
this will have. This team came up with a clever way to attenuate the RF signal to identify when a
bag was above or below the board. They made a diamond pattern under the boar with strips of
aluminum foil to partially shield the signal. The team struggled with the Bluetooth
communication system that was chosen for the project and although they had a working system,

there was much room for improvement [4].

Figure 1.6: RFID Scoring [3]

1.3.4. Autoscoring with Image Recognition

A group of senior electrical engineers used a combination of a visual system and a color sensor
to detect which bags have landed on the board or in the hole. They successfully got the camera to
detect the separate bags and add both to the score. They also got the color sensor and camera to
“communicate” with each other so that when a bag goes in the hole, only the color sensor will
detect it and add it to the score. They did have some issues with the camera not being able to
read 2 separate bags of the same color if they were on top of each other as well as the color

sensor not being able to detect multiple bags going through the hole at the same time. The model

was only half the true size of a cornhole board. Although the group had a semi-working

prototype, there were several spots left for improving their model [5].

Figure 1.7: Image Recognition Scoring [4]

2. Objective Statement

The previous attempts either had flaws in functionality and/or aesthetics. There was also no way
for the professional player to gain much from their boards. The objective of this project is to
make a fully automated cornhole scoring system that is fully functioning, portable, has bag data

extraction, and is aesthetically pleasing.

10

3. Specific Aims

For the auto-scoring system, a vectoring of pressure sensors is going to be used to detect how
many bags are on the board and where most of that pressure and weight is distributed. This can
also be used to detect where the bag landed for the bag data that can be extracted. The vectoring
will be paired with a color sensor matrix to determine which colored bags landed on the board.
The color sensor matrix will consist of multiple squares of color sensors to identify bag color at a
certain location on the board. For the bags that go into the hole, a multi-sensor design will be

implemented to ensure that all bags in the hole will be detected and recorded.

In the time where electronic games are more popular, this design helps preserve the classic game
of cornhole with a technological appeal. It also brings people together in relax social setting.
These are important cultural and social features for the design factor considerations located in

Appendix B.

4. Requirements/Constraints/etc.

Some restrictions that the system must pertain to is the regulation size of the cornhole board. The
board is a 4’ by 2’ board with a hole near the upper part of the board. The layout can be seen in

Figure 4.1.

é-ﬁ"%@(|9 em
15.2
M

“ 4"
15 cm
diameter

41122 cm

11

14
b 1016 em

Figure 4.1: Universal Cornhole Board Dimensions [5]

while playing.

The ability for the board to be stored away is also a huge concern for the average player. This
means the board would need to light enough weight to move around as well as being able to

break the board down enough to where it is a feasible job to store it away. This system should

also work off DC power. This means that the board will not have to be plugged into an AC outlet

12

5. Code Logic

This section will go through an overview of what the boards and sensors will do with different
scenarios. Team 1 is the red bags and Team 2 is the blue bags. This first scenario (Figure 5.1) is
when Team 1 throws a bag in the middle of the board. The pressure sensors (highlighted in
orange) will sense a change in equilibrium from their initial zeroed state. Then with the values
that are generated from the pressure sensors, a general area of color sensors will be activated to
read the color of the bag in that spot. Then when the bag is at rest, Team 1 will press their
relative button on the back of the board which will then initiate the end of their turn and it will
increase the current score of Team 1 by 1.

Figure 5.1: Team 1 Bag on Board

13

This second scenario (Figure 5.2) is when Team 2 throws a bag towards the bottom of the board.
The pressure sensors will sense a change in equilibrium compared to the first bag. Then with the

values that are generated from the pressure sensors, a general area of color sensors will be
activated to read the color of the bag in that spot. Then when the bag is at rest, Team 2 will press

their relative button on the back of the board which will then initiate the end of their turn and it

will increase the current score of Team 2 by 1.

Figure 5.2: Team 2 Bag on Board

14

This third scenario (Figure 5.3) is when Team 1 throws a bag in the hole. Multiple sensors that
are in the hole will detect that a bag has fallen in the hole and will read what color it is. Team 1

will press their button and the data will be successfully read and the bag will be released. Team

1’s current score will increase by 3.

Figure 5.3: Team 1 Bag in Hole

15

This fourth scenario (Figure 5.4) is when Team 2 throws a bag, and it misses the board
completely. Team 2 will press their button and when the readings are compiled, there will be no
difference from the previous turn. This tells the board that a bag was missed and will initiate the
end of Team 2’s turn.

Figure 5.4: Team 2 Bag Misses

At the end of each round, the current score of each team will be compared to each other. If Team
1 has a higher current score than Team 2, the difference between the two teams will be given to
Team 1 and vice versa for Team 2. For example, if Team 1 scored 4 points in round 1 and Team
2 scored 1 point in round 1, Team 1 has more points. This means Team 1 would have equated to
3 points and Team 2 would have 0 points after round 1.

16

This code logic continues until a team reaches a total of 21 points, in which the rounds and

points will reset.

6. Project Design

This section goes into detail of a first idea of the cornhole board as well as all of the subsystems
that are going into the design. The subsystems are explained to the reason that they were chosen

and why they fit the system as a whole.

6.1. Design Idea

Figure 6.1: 3D Model of Design

Unlike the designs discussed previously, this design uses color sensors and pressure sensors to
determine the bad color and location on the board and in the hole. The support frame will be
made of 17x4” wood planks, similar to a classic cornhole board. However, the top of this board
will be made of clear plastic. Color sensors will be laid out in a matrix beneath the clear top to
sense the color of the bags as shown in Figure 6.1. Pressure sensors will be mounted at each

17

corner of the top to locate the position of the bags by measuring a change in pressure to each
sensor. Color and pressure sensors will also be mounted in the hole to determine bags that have
gone through. The legs of the cornhole board will be either removeable or foldable, so that the
boards can be easily stored. The scoreboard will be at an angle so that the score can be seen

without the players straining to view the score on the side of the board.

The block diagram in Figure 6.2 helps explain the gameplay logic. The color sensors
communicate to the microcontroller (MCU) by the multiplexers and the pressure sensors
communicate through the analog digital converter (ADC). Each bag that lands on the board or in
the hole will be tracked and verified throughout the round of gameplay to identify knocking-off
or shifting of the bags. When the round is over, the Board 1 MCU will update Scoreboard 1 and
communicate the change in score to MCU 2 which will update Scoreboard 2. When round 2 is

over, sensor data is processed and score updates are sent by MCU 2 to MCU 1.

W -

n

MCU1
1 2

Cornhole Cornhole
Board 1 Board 2

Figure 6.2: Gameplay Overview
6.2. Systems

The automated scoring cornhole system consists of a listed 5 subsystems: sensors,

microcontroller, power, scoreboard, and physical board model. Each subsystem will be explained

18

what the ideal purpose and contribution to the system. An explanation of which parts were

chosen will be provided as well as considerations of other parts.

6.2.1. Sensors

The automated cornhole scoring system will use color and pressure sensors to determine the
color of the bags as well as how many bags are on the board. The pressure sensor that was
chosen was the SEN0296. This is a thin film style pressure sensor that has a range of 20g to
10kg, the widest range of all the sensors that were considered. The resistance also quickly drops
to a linear behavior for ease of signal processing. This sensor will require signal processing. The
SENO0294 was considered, but its range is smaller. The SF15-600 is similar in operation, but it is

a long strip style that would not sense pressure directly at one corner.

Figure 6.3: SEN0296 [7]

19

Figure 6.4: TCS34752 [2]

The color sensor chosen is the TCS34725. The reason this sensor was chosen over others is
because of its 12C capabilities and no need for an analog to digital converter. However, it does
require an 12C multiplexor. The two other color sensors that were in contention are the TCS3200
and the EACLSST3227A2. The TCS3200 has 4 on board LEDs that would illuminate the board
top making the reading easier for the sensor, but it needs an analog to digital converter. The
EACLSST3227A2 needs a custom PCB made for it. It could be made, but it would take more

time as well as money to get it fabricated.

6.2.2. Microcontroller

The microcontroller chosen for the system is the ESP32. The reason this microcontroller was
chosen over the Arduino microcontrollers is because it has Wi-Fi and Bluetooth modulation
capability. It still has the ability to write in the Arduino IDE which will make it easy to get
started. The pinout of the ESP32 can be seen in Figure 6.5. This MCU has 12C pins that will

allow communication from our multiplexers.

20

ESP32 Wroom DevKit Full Pinout

EVE]
RESTART/ EN
GPIO36

GND,

(FTFEY VSPI_MOST
GP1022/: vle o 4
GPI01 Aiv)
[ETEY/RX0
GPI021/ iwie =) 4
GND

(EFTRE) VSPI_MISO
(RTORE IVSPIICIK
[EEGEY VSPI_CS
GPI017/0p.0)
GPI016/1;:.¢)
GPI04

GP100

GP102

GPI015

GPIO039
GPIO34
GPIO35,
GPI032
GPIO33
GPI025
GPI026,
GPI027,
[/SDLCLKT/ HSPI_CLK /TC ; _ GP1014,
/SDDAT2] HSPI_MISO /TOUCH S ADC2_5 GPI012
GND

/SDLDAT3] HSPI_MOSI /TC ‘ 014/GPI013
SHD/SD2 O 4

Do not Connect (used by internal Flash) { SWP/SD3
€Sc/cMD

SDI/SD1
SDO/SDe Do not Connect (used by internal Flash)
SCK/CLK

@0000000000000000000¢
03555560660005606005000

©—— Inputonly

e—— Input / Output

~\— PWM Output
GPI0 pins are not 5V tolerant

2XSPI:VSPI & HSPI /.

12C [BAC /SD" UART

Figure 6.5: ESP32 Pinout [7]

The ESP32 can also be used to create a specific web application that can act as a Human
Machine Interaction (HMI) between the customer and the cornhole boards. This addition could
propel the project to another level of complexity. This web application could act as a scoreboard

as well as a selector of the mode.

6.2.3. Power

The source of power was seen as one of two options: chargeable or rechargeable. A rechargeable
battery pack seemed like the greater option because it wouldn’t make the customer purchase
regular batteries on a regular basis to ensure their cornhole boards have power. A rechargeable
Lithium-lon battery was chosen because it is one of the more common rechargeable batteries as
well as long-living performance. The battery pack shown in Figure 6.6 uses a battery
management system (BMS) that protects the cells from over charge, over discharge, and short
circuit. In case of a short circuit, this could prevent fire. Also, the BMS used with rechargeable
cells prolongs the life of the battery pack which results in less electronic waste. These are
important health and safety as well as environmental features for the design factor considerations

in Appendix B.

21

Figure 6.6: Lithium lon Battery [3]

6.2.4. Scoreboard

A physical scoreboard will be included in the system. The score board is an e-ink display placed
on the back side of the cornhole board. This display was chosen due to its low power mode and
its outdoor readability. Since cornhole is mainly an outdoor game, it was preferred that these
displays could be read in natural light and not tough for the players. The display only draws
power whenever the display is updated, so if there is a delay in the game and the score isn’t

changed for a few minutes, the display would look like Figure 6.7 for those few minutes.

K
S
o
o
=

—

i ©

o

il

L\

4.2inch e-Pa

Figure 6.7: E-ink display

7. Game Board Design

The physical board was designed to be built using widely available materials so manufactures
around the globe could build them. This means that this large product can be manufactured,
assembled, and distributed locally anywhere in the world without the need for high shipping cost

that come with large items. These are important global and economic design factor
considerations located in Appendix B.

While designing the full-size board prototype, three versions were 3D modeled. Each time the
board was redesigned to meet requirements that the previous board did not fulfill. Version 3 of

the full-size prototype met all requirements, was built and assembled with all electrical
components.

7.1. Early Designs

Before the final design, there were two versions that were updated and changed to better fit the

project and give better results. Each section will explain the reason for each version, but then
give the reasons why they were changed.

22

23

7.1.1. Versionl

Figure 7.1: Board Model: Version 1

The first board was designed with the intent to implement pressure sensors at each corner and
color sensors in a matrix below the board surface. A clear plexiglass top was included so the
color sensors could read the bag colors. Color sensors would be mounted to the bottom of the
recessed cubes shown in Figure 7.1. The walls of the grid patterns were designed to stop light
coming in from the side from being read by the color sensor. The hole at the top was open like a

normal cornhole board so bags could pass through. Pressure sensors were in the mounts for the
feet.

24

This design had a few problems. The overall amount of wood used would make this design too
heavy. Aside from being difficult to move, the weight also was too great for the pressure sensors
that were selected. Additionally, the full height interior dividing walls did not allow for interior

wiring.

7.1.2. Version 2

Figure 7.2: Board Model: Version 2 Half Section

The second board design had some dramatic changes to solve the problems from the first design.
Figure 7.2 shows the version 2 board in a half section view to make the changes easier to see.
First, the board is now split into two major sections, a framed bottom section, and a top section
that includes the plexiglass surface and grid that is suspended above the frame leaving a small
gap. The top section grid and outer panels are made from ¥ inch plywood to decrease weight
while providing support for the plexiglass and shade the color sensors from light coming in from
the side. In the corners, mounted to the top of the frame, are two-piece, 3D printed mounts that
contain the pressure sensor between the two pieces and suspend the top above the bottom. The
hole is also a 3D printed part that is incorporated into the grid walls and suspended above the

25

bottom. Version 2 also included covers that would attach to the bottom of the grid and have a
hole in the bottom to allow the color sensor to read the surface. The covers also provided a way
to hide the wiring. The bottom section included a % inch plywood panel to mount color sensors,
electronic components, and hold wiring. The outer edges were framed with 1x2 inch wooden

members to stiffen the panel and provide a strong mounting point for the feet.

Although this was a big step forward for the final design, there were some problems with this
design as well. The mounts were too high and had the potential to block light from the corners of
the board. The mounts also had no way to locate the top so that it set directly above the bottom.
Version 2 also had no way to read bags that went into the hole. The bottom frame of this version
was built to test rigidity, but the design allowed the bottom to twist too much which would have

caused the pressure sensors to not read correctly.

26

7.2. Current Board Design

Figure 7.3: Board Model: Version 3

Version 3 of the full-size prototype looks similar to Version 2, but it has some significant
changes. It still uses the two-piece, top and bottom design. First, to increase the rigidity of the
bottom, the frame members were turned 90 degrees, so the wider part of the board was
perpendicular to the bottom panel. This increased the bending moment so the frame would resist
twisting. At the corners of the bottom frame, 3D printed brackets were designed to bolt to the
frame members. These brackets were also designed with a recessed area to hold the pressure
sensors. This design lowers the height of the sensor so the mounts block as little light as possible.
The bracket recess also helps locate the top section so that it aligns uniformly on top of the
bottom section. The bottom of the pressure sensor recess is at a 10-degree angle with the board
surface so that the sensors are parallel to the ground. This ensures the entire weight of the bag is

read between all four sensors.

27

Figure 7.4: Board Model: Version 3 Half Section

The top section grid height was shortened to accommodate the taller members. The outer corners
were designed to be 3D printed to incorporate the top part of the pressure sensor mount. The 3D

printed top section hole piece was shortened to the same height as the grid to make room for a
new hole design.

28

7.3. Hole Design

* Pressure Sensor
 Solenoid Door Release
* Torsion Spring Door Return

Figure 7.5: Hole Design

The previous board designs, versions 1 and 2, did not have a way to detect bags that went into
the hole. However, version 3 allowed enough room to design a system to solve this problem.
This hole design has three main 3D printed parts. The top part of the hole assembly mounts to
the top of the bottom panel of the board. It has two places to mount color sensors on opposite
sides. It also has a place to mount a pressure sensor. The bottom part of the hole assembly
mounts to the bottom of the bottom panel of the board. % inch bolts pass through the bottom of
the hole assembly and through the bottom panel of the board and screw into treaded holes in the
top part of the hole assembly. A hinged door is also mounted to the bottom part of the assembly.
It has a torsion spring on the hinge so the door will return to a closed position when there is no
bag on the door. The door is kept closed using a solenoid latch. The bottom of the door also has a

color sensor mount.

Multiple color sensors are needed incase more than one bag goes into the hole at one time. The

system is designed to detect when a bag goes into the hole, determine how many bags are present

29

using the pressure sensor, detect the color of the bags, and then release the bags as soon as they

are read. A detailed flow chart of this process is shown in Figure 7.6.

Read Read Read
Color Color Color
Sensor 1 Sensor 2 Sensor 3

All
Sensors
Red?

All
Sensors
Blue?

Bag
weight =
1?

Bag
weight =
1?

A

yES

yes no yes no

One Blue
Bag in the
Hole.

Two Blue
Bagsin
the Hole.

Two Red
Bagsin
the Hole.

OneBlue
Bag in the
Hole.

Drop the Bag(s)

Figure 7.6: Hole Flow Logic

7.4. Whole Board Assembly

Figure 7.7: Physical Board Design

30

Figure 7.7 shows a picture of the assembled board with color sensors, multiplexer PCBs, and
LED strips installed. The Plexiglass top has been removed for image clarity. This image shows
the color sensors mounted in the center of each grid square. The shadows from the grid walls
demonstrates that they do block some light from the side from reaching the color sensors.

8. Communication

Communication is a vital part of the project. This can be broken up into three categories:
communication within the board, communication from the sensors to the microcontroller, and
microcontroller to microcontroller (board to board). Each form of communication uses standard
protocols developed for wireless or wired communication and each sub-section will go into

detail about how these were accomplished.

8.1. W.ithin the Board

Communication within the board includes actions within the code of the microcontroller that
facilitate communication with each color and pressure sensor, as well as controlling backlights
and the hole latch solenoid. General purpose input output (GPIO) pins of the ESP32 are used to

turn on and off pressure sensor voltage dividers, backlights, and hole latch solenoid. Serial

31

communication pins are used to control multiplexers to communicate with color sensors
individually.

Y
MUX
0x70
cho cha
»|Chi Chs |g
J|cn2 Che |
»|Ch3 Ch7 |
./
k.
—
ESP32

Figure 8.1: 12C Multiplexer Diagram

As mentioned in section 6.2.1, the color sensors use 12C communication to send information to
the microcontroller. This is a serial communication protocol that uses two wires. When
communicating using 12C, primary devices like microcontrollers communicate with a specific
secondary device like a color sensor by sending the secondary device’s address before issuing
commands. However, the color sensors used for this board all have the same address and cannot
be changed as shown in Figure 8.1. To communicate with an individual color sensor, a
multiplexer is used. A multiplexer allows the 12C bus to be connected to one sensor at a time.
The multiplexer used in this project is the TCA9548A shown in Figure 8.2. It has eight
individual channels to which a color sensor can be connected. It also has three address pins that
can be used to change the 12C address of each multiplexer. This is necessary because, since 35

color sensors were used, five multiplexers were needed.

32

Figure 8.2: TCA9548A Multiplexer

To communicate with color sensors within the board, there are four main wiring lines that need
to be ran through the board: positive voltage (V+). Ground (GND), data (SDA), and clock
(SCL). The function of SDA and SCL will be talked about in detail in Section 8.2. To be able to
distribute these lines effectively across a 4’x2” board, a custom printed circuit board (PCB) was
designed. This PCB can be seen in Figure 8.3. It also shows the connection of the screw
terminals. The screw terminals following the first two pairs follow the same pattern going to the
eighth pair.

Figure 8.3: Multiplexer Printed Circuit Board

33

This PCB holds a multiplexer and 20 screw terminals. This allows each color sensor to be
addressed individually as well as being able to distribute V+ and GND across the board without
an immense amount of wire. This PCB is split into 2 main sections: color sensor connection and
distribution. The color sensor connection sections and the top and bottom section of Figure 8.3.
This allows the multiplexer to be connected to each color sensor individually. The distribution
sections are the left and right sections of Figure 8.3. This allows the four main wiring lines to be
distributed between the microcontroller and each PCB. Without the PCBs, each color sensor
would need to connect to their specific multiplexer as well as a power source to be able to

function. Figure 7.7 shows how these PCBs help diminish the amount of wire needed.

Figure 8.4: Pressure Sensor Voltage Divider

The pressure sensors act as variable resistors. They are placed into a voltage divider as shown in
Figure 8.4. Since each of the five voltage dividers draw around 20mA, the 3.3V power source
can be turned on and off as needed to reduce power consumption. The 3.3V power is provided
by a GPIO pin on the ESP32.

34

vVCcC
[12v

vce W LED
12V

ESP32 GPIO
BIRFZ&MN

TC4420CAT

Figure 8.5: LED Control Circuit

The LED backlights and solenoid are also controlled using GPIO pins. However, both operate
using 12V, so the 3.3V coming from the microcontroller cannot be used directly. An N-channel
MOSFET was used to turn on and off the ground side of the 12V circuit for both devices as
shown in Figure 8.5. The 3.3V signal from the ESP32 was also not a high enough voltage to
fully turn on the MOSFET, so the TC4420 MOSFET driver IC was used to amplify this signal to

12V. The circuit to control the solenoid was the same as the LED control circuit.

8.2. Sensor to Microcontroller

Color sensors and pressure sensors require separate types of communication to communicate
with the microcontroller. Since there are 35 color sensors (32 on the board and 3 in the hole),
they need to be addressed individually, as stated in section 8.1, using multiplexers and the data
and clock lines from the microcontroller. This is called Intra-Integrated Circuit communication
or 12C communication. 12C uses two wires (Serial Clock and Serial Data) in a bus configuration
as shown in Figure 8.6. To begin communication, the microcontroller will send a start bit to the
serial bus to indicate to all devices that communication is starting. Then an address is sent to
indicate with which device the microcontroller needs to communicate. Next, a single bit is sent
to indicate whether this is a read or write command. Another single bit is sent to confirm.
Information is then sent in a predetermined number of bytes and confirmed until the primary

issues a stop bit.

35

Also called: 12C, 12C, or IIC Serial Clock Line and Serial Data Line

Designed for SCL — . .

* Short distance SDA l 1 l l

* |ntra-board communication s N . N N
* LD_W-SPEECI peripheral ICs to Primary Secondary Secondary| [Secondary

microcontrollers. L
p. v A .
Secondary Acknowledge Acknowledge Acknowledge

Start Address Read/\Write | Dalla 1 Da1|a 2 Stop

SDA

SCL

Figure 8.6: Intra-Integrated Circuit Communication

Reading the output of the pressure sensors is easier since serial communication is not involved.
An analog to digital converter (ADC) pin in is connected to the middle of the voltage divider, as
shown in Figure 8.4, to read the change in voltage across the pressure sensor. The ADC converts
the voltage reading into a 12-bit value. This is how the microcontroller determines the pressure at

each sensor.

8.3. Board to Board

It was established that wireless communication was ideal for this project. The ESP32 has a
special protocol called ESP-NOW. ESP-NOW is a communication protocol developed by
Espressif Systems, specifically for their ESP8266 and ESP32 Wi-Fi modules. It enables low-
power, peer-to-peer communication between devices without the need for a traditional Wi-Fi
network infrastructure. ESP-NOW is well-suited for 10T applications, providing a fast and
efficient way for ESP8266/ESP32 devices to exchange data directly, making it ideal for
scenarios where power consumption and quick data transmission are critical. As seen in Figure
8.7, the ESP-NOW protocol skips the top 4 layers of typical operating systems interconnections
such as home Wi-Fi. This protocol sets up a “primary-secondary” architecture similar to the 12C
communication which allows each ESP to send data to each other and use that data. The reason

to have data sent from both ESPs to each other is to communicate the score between the boards,

36

so the game can progress evenly and not have different values of the team’s score. The primary
ESP32’s communication code can be found in Appendix G and the secondary ESP32’s
communication code can be found in Appendix H. This wireless communication uses the

standards from the Federal Communication Commission section 15 as stated in Appendix B.

Operating Systems Interconnection

(OSI) Model (e.g., Home WIFI Network) Modes:
» Primary-to-Secondary

* Primary-to-Many
Secondaries
 Peer-to-Peer

Benefits:

: « Simplified Control
6. PhyS]Cal Layer (80211b/g/n) e Reduced Process‘ing

Resources
ESP-Now Model « Reduced Power

Consumption
2. Physical Layer (802.11b/g/n) « 100m Range

Figure 8.7: ESP-NOW Protocol

9. Testing

This project went through two small prototype setups before moving to a full-size prototype.
Each of the prototypes were used for different testing applications. The first small-scale
prototype was uses for testing different kinds of sensors. The second small-scale prototype was
used to test microcontrollers and communication. The large-scale prototype was used to test all
systems individually.

9.1. Prototype

The first prototype can be seen in Figure 9.1. This is a 1’x1’ box that simulates a section of a
cornhole board. The prototype uses 4 color sensors (one in each quadrant), 4 pressure sensors

37

(one in each corner), 1 multiplexer, and 1 microcontroller. The microcontroller for the first
prototype was an Arduino Mega because of the versatility of the IDE and all of the open
resources that help with building a code. The Mega also has a lot of pins available allowing for a

change in sensors if needed.

Figure 9.1: Prototype Sensing Red Cornhole Bag

For the second prototype, the Arduino Mega microcontroller was switched to an ESP32 for its
wireless communication capabilities as well as still being able to use the Arduino IDE. A second
multiplexer was also used to control two of the color sensors to test the control of the

multiplexers.

Using the small prototype, the code in Appendix F was used to gain data for both the pressure
sensors and the color sensors. Figure 9.2 showcases the digital value of the pressure sensors

when there are no bags on the board.

38

No Bags

20
15

10

Digital Value
(6]

Qlval Q3val Q4val

-10

Figure 9.2: Pressure Sensor Values with No Bags on Board

Figure 9.3 showcases the digital values of when there is a bag located in Quadrant 1. All of the

values jumped up, but Quadrant 1 jumped immensely compared to the rest.

One Red Bag at Q1
200
180
160
140
120

100

80
60
40
. I
0

Qlval Q2val Q3val Q4val

Digital Value

Figure 9.3: Pressure Sensor Values with Bag Located in Quadrant 1

39

Figure 9.4 showcases the digital values of when a bag is located in between Quadrant 1 and

Quadrant 2. Compared to Figure 9.3, the values of the are quite different.

Red bag half Q1 half Q2

300
250

200

Digital Value
=
u
o

100

50

Qlval Q2val Q3val Q4val

Figure 9.4: Pressure Sensor Values of Bag Located Between Quadrant 1 and Quadrant 2

Figure 9.5 showcases digital values of the color sensors when there is no bag on the board. All of

the color values, besides blue, are at the maximum digital value.

No Bags

Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4

70000

60000

50000

40000

= 30000

igital Value

D

20000

10000

Figure 9.5: Color Sensor Values with No Bag on the Board

40

Once a bag lands on the board, that is when the values start to change. Figure 9.6 showcases
digital values of the color sensors when there is a blue bag in Quadrant 1. It can be seen that all
of the values in Quadrant 1 dip, besides the clear value. It takes a conditional to be able to

identify that it is a blue bag that has been detected.

One Blue Bag at Q1
70000

60000
50000
40000
30000
20000
10000

0

Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4

Digital Value

Figure 9.6: Color Sensor Values with Blue Bag Located in Quadrant 1
Figure 9.7 showcases digital values of the color sensors when there is a red bag in quadrant 1.
This figure shows similarities to the previous one, but the red value sits at a much higher value

than before. This allows the group to know that a red bag is being read.

41

One Red Bag at Q1

70000

60000
50000
40000
: 30000
20000
10000

Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4

igital Value

D

o

Figure 9.7: Color Sensor Values with Red Bag Located in Quadrant 1

Figure 9.8 showcases digital values of the color sensors when there is a red bag located in
between quadrant 1 and quadrant 2. Both Quadrant 1 and Quadrant 2 have a change in digital

value. Similarly, to Figure 9.7, the red values sit much higher than the rest of the values in their

specific quadrant.

Red bag half Q1 half Q2

70000

60000
50000
40000
& 30000
20000
10000

Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4

Digital Value

o

Figure 9.8: Color Sensor Values with Red Bag Between Quadrant 1 and Quadrant 2

42

These results furthered the group’s confidence in the project because these values were able to be

separated and displayed. It also helped prove the concept of the project as a whole.

9.2. Testing Plan

After testing the prototype and getting successful reading from both sensors, expansion into the
full-sized board was the next area to go. The first electrical test is being able to get all the
components to run off a singular DC power supply. This leads to testing each quadrant of
sensors, which consists of eight color sensors connected to one PCB and one pressure sensor.

This test will consist of similar tests that were ran on the prototype to receive similar results.

Some individual tests that were tested are the ability to control both the backlighting and the
solenoid. The backlighting needs to be controlled by a pulse-width modulation to allow it to
brighten and dim depending on the brightness of the surrounding area. The solenoid needs to be
controlled by an electrical signal from a specific GPIO pin, so that when a bag lands in the hole,
the solenoid will retract and drop the bag through based on whether that GP10 pin is high or low.
Apon assembly for the board components, each component system was tested using the code

found in Appendix J through Appendix Q.

After the components can be controlled and have power delivered to them, the code is then
verified. The code consists of an expanded version of the prototype code, the gameplay code, and
the communication code. The prototype code consists of pressure sensor and color sensor
readings. The gameplay code uses the readings from the previous code to determine when either
team scores or not. The communication code then takes each team's final score of each round and

communicates to the other ESP32 and updates that score.

10. Results

Applying the test plan stated in section 9.2, there were experiences of accomplishments as well
as some areas that didn’t fully show what was trying to be shown. Section 10.1 shows the
accomplishments that the group experienced, and section 10.2 shows some of the problems that
were faced.

43

10.1. Accomplishments

This project did face some issues, but there was also a great deal of accomplishments. The first
of them is being able to prove the concept of the project using the prototype. The prototype
allowed us to show the values received from the color sensors and pressure sensors as shown in
Figure 9.2 through 9.8. Since this project was started from scratch, the entire design process was
needed. From thinking of an idea to designing it, then building it and testing it. It allowed the
group members to experience a full process of what the real world could hold. The adjustable

backlighting control was achieved. A PWM signal was sent to each LED strip and was

brightened and dimmed. Figure 10.1 shows the full-sized board with its LED strips lit up.

Figure 10.1: Full-Sized Board with LEDs

The group was also able to control the solenoid with a high or low value being sent to it from a
GPIO pin. Whenever the solenoid specific GPIO pin was high it would activate the solenoid to
retract which released the trap door of the hole and would let the bag drop. Wireless
communication was also a big accomplishment of this project. One ESP32 was established as the
“primary”, and another was established as the “secondary”. The primary ESP32 was able to

44

send changing data to the secondary ESP32. The data was then displayed using the serial monitor
in the Arduino IDE.

A huge part of this project is to be able to control the game and keep the score correctly and the
group was able to verify their gameplay logic using artificial numbers. These artificial values
were used because values could not be found from the sensors on the full-sized board. This will
be explained in more detail in section 10.2. Score values were plugged into the code to increase
the score of both teams, but team 1 would increase faster. The code was able to track both team’s
score through a singular round, cancel out the scores, and hold those values to the remainder of

the game until there was a winner.

10.2. Problems Faced

Even though there were many accomplishments from this project, there were three main
problems that the group ran into. The first is that the color sensors did not respond when they
were trying to be located. This didn’t allow the group to test the color sensors on the full-sized
board. The second problem was similar to the first, but it involves the pressure sensors. They
either gave values of 0 or the full 12-bit value of 4095, this 12-bit value was the analog
resolution in the code. This caused the issue of not being able to identify a bag has hit the board
let alone located it. The last problem that was identified was that the solenoid was not powerful

enough to open the trap door whenever there was a bag resting on it.

11. What Could be Changed?

There are some recommendations that the group believes could fix the problems that were
experienced. The reason that the color sensors had issues responding was because there was an
immense amount of capacitance along the 12C bus. Since this value of the output was too high,
the threshold for the secondary devices won’t be reached. This means that they will not
recognize the signal at all. [11] The next step would be to try and find a way to reduce this

capacitance to be able to have all the color sensors respond.

45

Another recommendation is to use an op-amp on the pressure sensors to amplify the response.
This should allow the values of the pressure sensors to be read. A stronger solenoid should fix

the problem of not being able to retract and open the trap door.

The group would also recommend trying another approach if possible. The one approach that
would seem to solve issue of this project as well as the previous ones would be to use RFID
chips with the optimized pressure sensors. This would allow the bags to be identified and it will
also not misidentify bags that missed the board and count them as if they are on the board by

having the pressure sensors sense a change in equilibrium.

12. Project Planning

A project such as this, especially starting from scratch, needs to be well planned out. Sections

12.1 and 12.2 will show the bill of materials and the timeline of the project respectfully.

12.1. Bill of Materials

The bill of materials (Table 12.1) is a table that lists out the parts and components that will go
into the physical design of the cornhole board. The main components of our system are listed in
the system's subsections. The board plans to have 32 color sensors which is roughly 11 units of a
3-pack bundle of color sensors. Four pressure sensors are used, one in each corner. One e-ink
display as the physical scoreboard. Two battery packs will be used to power all the systems. One
microcontroller will be used to have all the components communicate with each other. Extra
LED strips will be used to provide more light intensity for the color sensors to give a consistent

reading of whichever color they see.

Table 12.1: Bill of Materials

Item Qty Unit Cost Cost Description
3 pack Color
1 12 $12.88 $154.56 Sensors
2 5 $7.90 $39.50 Pressure Sensor
3 2 $34.99 $69.98 E-ink Display

46

4 1 $18.95 $18.95 Battery Pack
5 1 $17.99 $17.99 Microcontroller
6 5 $7.92 $39.60 16' LED Strips
7 1 $36.23 $36.23 Plexiglass Cover
10 pack
8 1 $12.79 $12.79 Multiplexers
9 3 $1.49 $4.47 Op-Amp
Differential
10 1 $3.93 $3.93 Amplifier
11 1 $13.00 $13.00 1/4" Plywood
12 2 $3.00 $6.00 1x2
13 1 $3.00 $3.00 2x4
14 1 $8.49 $8.49 Solenoid
Printed Circuit
15 5 $1.75 $8.75 Board
Screw-in
16 100 $0.70 $70.00 Terminals
17 1 $18.00 $18.00 3D Filament
Buck Boost
18 1 $8.99 $8.99 Converter
19 1 $6.49 $6.49 JST Connectors
20 2 $16.99 $33.98 Ribbon Cable
Ferrule
21 1 $24.99 $24.99 Connectors
Total $574.70

47

12.2. Timeline

The specific tasks can be seen in Appendix A. The table shows when those specific tasks were
completed. Even in this short amount of time, the group was able to get a good amount of

progress done on their project.

13. Conclusion

This idea of a project is to allow players to play the game of cornhole leisurely and not have to
worry about the score. It would also allow professional/competitive players to withdraw their
data and analyze their performance. This design offers accurate, automated scoring and data with
a board and bags that are regulation size and weight. Although an expansion from the prototype
did not yield the results that were expected, it was still a valuable start to a project. Not a lot of
time was left for implementation and testing the full-sized board due to constructing the physical
board as well as distributing the power. This project was still a great, on-hand experience with a
lot of learning. This report has the honest results of the testing and prototypes which follows the
Code of Ethics for Engineers provided by the National Society of Professional Engineers
(NSPE).

48

References

[1] 07 May 2021. [Online]. Available: https://cornholecanvas.com/blogs/cornhole-life/history-of-
cornhole-test-
2#:~:text=In%201883%2C%20Heyliger%20de%20Windt,with%20a%20hole%20in%20it..

[2] ACL,"ACL," [Online]. Available:
https://www.google.com/imgres?imgurl=https%3A%2F%2Fapp.iplayacl.com%2Fassets%2Fi
cons%?2Ficon-
512x512.png&imgrefurl=https%3A%2F%2Fapp.iplayacl.com%2F&tbnid=eRirsmk8RsH8A
M&vet=12ahUKEwjzuMXP2bvOAhUG58KDHYgBDTUQMygDegUIARCSAg..i&docid=9
RYhcV7TD-aEUM&wW=512&h=5. [Accessed 3 2023].

[3] "Amazon," [Online]. Available: http://www.amazon.com.

[4] F.D.A.L.N.P.Diovanni Lara, "Smart Cornhole,” 2017. [Online]. Available:
https://www.ece.ucf.edu/seniordesign/sp2017su2017/g10/files/Group%2010%20SD1%20Fin
al%20120%20Pages%20Smart%20Cornhole.pdf. [Accessed 2023].

[5] M. B. D. H. Harrison Overturf, "Automatic Score Tracking Cornhole Game," 2020. [Online].
Available:
https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1521&context=eesp.
[Accessed 2023].

[6] Fantastic Offense, "Dimensions.com,” [Online]. Available:
https://www.dimensions.com/element/cornhole-bean-bag-toss-boards-platforms. [Accessed
April 2023].

[7] "Digikey," [Online]. Available: http://www.digikey.com.

[8]

[9]

[10]

[11]

49

"Upesy," 18 08 2022. [Online]. Available: https://www.upesy.com/blogs/tutorials/esp32-
pinout-reference-gpio-pins-ultimate-guide.

Tosso.com, "How to play cornhole,” [Online]. Available:

https://www.tosso.com/blogs/news/how-to-play-cornhole. [Accessed March 2023].

Espressif Systems, "Wireless MCUs and AloT Solutions,” [Online]. Available:
https://www.espressif.com. [Accessed 9 2023].

K. E. Clothier, "What is Bus capacitance in 12C? How it limits number of devices can be
connected to the bus?," Electrical Engineering Stack Exchange, 2020. [Online]. Available:
https://electronics.stackexchange.com/questions/494718/what-is-bus-capacitance-in-i2c-how-
it-limits-number-of-devices-can-be-
connected#:~:text=As%20the%20capacitance%200n%?20the,in%20time%20t0%20be%20regy
istered.. [Accessed 1 12 2023].

Appendix A: Project Timeline

Task Finish Date
Prototype Color Sensor Reading 7/30/2023
Prototype Pressure Sensor Calibration 7/30/2023
Full Board Design 9/15/2023
PCB Fabricated 9/27/2023
Version 2 Physical Model Built 10/1/2023
Communication Code 10/13/2023
Version 3 Physical Model Built 10/15/2023
Faculty Presentation 11/7/2023
Gameplay Code 11/15/2023
Implementation and Wiring Complete 11/22/2023
Component Testing 11/30/2023
Testing and Troubleshooting 11/30/2023
Project Presentation 12/1/2023

50

Appendix B: ABET Outcome 2, Design Factor Considerations

ABET Outcome 2 states "An ability to apply engineering design to produce solutions that meet

specified needs with consideration of public health safety, and welfare, as well as global,

cultural, social, environmental, and economic factors."

ABET also requires that design projects reference appropriate professional standards, such as

IEEE, ATSM, etc.

Design Factor

Page number, or reason not applicable

Public health safety, and welfare | Page 20
Global Page 22
Cultural Page 10
Social Page 10
Environmental Page 20
Economic Page 22
Ethical & Professional Page 47

Reference for Standards

NSPE Code of Ethics, Title 47 Federal Communications

Commission: Section 15, IEEE 802.11-2012

Appendix C: TCS3472 Datasheet

TCS3472
'TAOS COLOR LIGHT-TO-DIGITAL CONVERTER
b with IR FILTER

TAOS135 - AUGUST 2012

Featu res PACKAGE FN
DUAL FLAT NO-LEAD
® Red, Green, Blue (RGB), and Clear Light (TOP VIEW)
Sensing with IR Blocking Filter —
- Programmable Analog Gain and L] -
Integration Time Voo 1] | || 6 SDA
- 3,800,000:1 Dynamic Range L] E L
— Very High Sensitivity — Ideally Suited for SCL 2 | {5 INT
Operation Behind Dark Glass aND 3 [4 NC
® Maskable Interrupt M\ Ied
- Programmable Upper and Lower)
Thresholds with Persistence Filter Feckege Drawing Notto Scala
® Power Management . .
- Low Power — 2.5-uA Sleep State Applications
- 65-pA Wait State with Programmable Wait ® RGB LED Backlight Control
) State Time from 2.4 _ms to >7 Seconds ® Light Color Temperature Measurement
% FOReMal Compatlblle Irigriscy ® Ambient Light Sensing for Display
— Data Rates up to 400 kbit/s :
= . Backlight Control
- Input Voltage Levels Compatible with Vpp . _
or 1.8V Bus ® Fluid and Gas Analysis
® Register Set and Pin Compatible with the ® Product Color Verification and Sorting
TCS3x71 Series
® Small 2 mm x 2.4 mm Dual Flat No-Lead End Products and Market Segments
(FN) Package ® TVs, Mobile Handsets, Tablets, Computers,
and Monitors
® Consumer and Commercial Printing
® Medical and Health Fitness
® Solid State Lighting (SSL) and Digital
Signage
® Industrial Automation
Description

The TCS3472 device provides a digital return of red, green, blue (RGB), and clear light sensing values. An IR
blocking filter, integrated on-chip and localized to the color sensing photodiodes, minimizes the IR spectral
component of the incoming light and allows color measurements to be made accurately. The high sensitivity,
wide dynamic range, and IR blocking filter make the TCS3472 an ideal color sensor solution for use under
varying lighting conditions and through attenuating materials.

The TCS3472 color sensor has a wide range of applications including RGB LED backlight control, solid-state
lighting, health/fitness products, industrial process controls and medical diagnostic equipment. In addition, the
IR blocking filter enables the TCS3472 to perform ambient light sensing (ALS). Ambient light sensing is widely
used in display-based products such as cell phones, notebooks, and TVs to sense the lighting environment and
enable automatic display brightness for optimal viewing and power savings. The TCS3472, itself, can enter a
lower-power wait state between light sensing measurements to further reduce the average power consumption.

The LUMENOLOGY © Company Copyright @ 2012, TAOS Inc.

Texas Advanced Optoelectronic Solutions Inc.
1001 Klein Road « Suite 300 « Plano, TX 75074 « (972) 673-0759
www.taosinc.com 1

TCS3472

COLOR LIGHT-TO-DIGITAL CONVERTER

with IR FILTER

TAOS135 - AUGUST 2012

Functional Block Diagram

| Wait Control | Interrupt H» INT
" IR-Blocking 7Y

DD Filter Upper Limit » [1
RGBC Control R : | < S6l

Clear ADC | Clear Data v = "1 &

2| £ 5

Red ADC Red Data W E

Red > 5

= Green ADC | Green Data > <
Green < » SDA

= Blue ADC | Blue Data i
e — < %B"’e

Detailed Description

The TCS3472 light-to-digital converter contains a 3 x 4 photodiode array, four analog-to-digital converters
(ADC) that integrate the photodiode current, data registers, a state machine, and an 12C interface. The 3 x 4
photodiode array is composed of red-filtered, green-filtered, blue-filtered, and clear (unfiltered) photodiodes.
In addition, the photodiodes are coated with an IR-blocking filter. The four integrating ADCs simultaneously
convert the amplified photodiode currents to a 16-bit digital value. Upon completion of a conversion cycle, the
results are transferred to the data registers, which are double-buffered to ensure the integrity of the data. All
of the internal timing, as well as the low-power wait state, is controlled by the state machine.

Communication of the TCS3472 data is accomplished over a fast, up to 400 kHz, two-wire 12C serial bus. The
industry standard I12C bus facilitates easy, direct connection to microcontrollers and embedded processors.

In addition to the I2C bus, the TCS3472 provides a separate interrupt signal output. When interrupts are
enabled, and user-defined thresholds are exceeded, the active-low interrupt is asserted and remains asserted
until it is cleared by the controller. This interrupt feature simplifies and improves the efficiency of the system
software by eliminating the need to poll the TCS3472. The user can define the upper and lower interrupt
thresholds and apply an interrupt persistence filter. The interrupt persistence filter allows the user to define the
number of consecutive out-of-threshold events necessary before generating an interrupt. The interrupt output
is open-drain, so it can be wire-ORed with other devices.

Copyright © 2012, TAOS Inc.

The LUMENOLOGY © Company

TEXAS

ADVANCED
OPTOELECTRONIC
SOLUTIONS®

OTAOS

www.taosinc.com

53

TCS3472
COLOR LIGHT-TO-DIGITAL CONVERTER
with IR FILTER

TAOS135 - AUGUST 2012

Terminal Functions

TERMINAL
NAME NO. TYPE DESCRIPTION
GND 3 Power supply ground. All voltages are referenced to GND.
INT 5 o Interrupt — open drain (active low).
NC 4 [e] No connect — do not connect.
SCL 2 1 I2C serial clock input terminal — clock signal for I2C serial data.
SDA 6 110 I2C serial data I/0 terminal — serial data I/O for I2C .
Vpp 1 Supply voltage.

Available Options

DEVICE ADDRESS PACKAGE - LEADS INTERFACE DESCRIPTION ORDERING NUMBER
TCS347211 0x39 FN-6 12C Vbus = Vpp Interface TCS34721FN
TCS34723F 0x39 FN-6 12C Vbus = 1.8 V Interface TCS34723FN
TCS34725 0x29 FN-6 12C Vbus = Vpp Interface TCS34725FN
TCS34727 0x29 FN-6 12C Vbus = 1.8 V Interface TCS34727FN

1 Contact TAOS for availability.

Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)’

Supply voltage, Vpp (NOtE 1) oo e e e et 3.8V
Inputterminal voltage -05Vto3.8V
Output terminal VoRageo -05Vto38V
OutputiterminalicUrtent! : oo v s swwmis s somans sssme svavuns sswvns vossins ssesmis ssons smwvane vows s -1 mAto 20 mA
Storage temperature range, Totg « ..o vvvven ettt —40°C to 85°C
ESB tolerance; human body model s s quw s swon sees sams s e Seins Sas Ses S SEme S § & 2000 V

1 Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltages are with respect to GND.

Recommended Operating Conditions

MIN NOM MAX | UNIT
Supply voltage, Vpp (TCS34721 & TCS34725) (12C Vpys = Vpp) 27 3 3.6 "
Supply voltage, Vpp (TCS34723 & TCS34727) (12C Vpys = 1.8 V) 27 3 3.3 Vv
Operating free-air temperature, Ta -30 70 °C

The LUMENOLOGY © Company Copyright © 2012, TAOS Inc.

¥ TEXAS
ADVANCED
OPTOELECTRONIC
SOLUTIONS®

www.taosinc.com 3

TCS3472
COLOR LIGHT-TO-DIGITAL CONVERTER
with IR FILTER

TAOS135 - AUGUST 2012

Operating Characteristics, Vpp = 3 V, Ty = 25°C (unless otherwise noted)

PARAMETER TEST CONDITIONS MIN TYP MAX [UNIT

Active 235 330

Ibp Supply current Wait state 65 WA
Sleep state — no I12C activity 25 10
3 mA sink current 0 0.4

VoL INT, SDA output low voltage P — 0 06 \

lLeak Leakage current, SDA, SCL, INT pins -5 5 uA

I eak Leakage current, LDR pin -5 5 A
TCS34721 & TCS34725 0.7 Vpp

Vi SCL, SDA input high voltage TCS34723 & TCS34727 125 \%
TCS34721 & TCS34725 0.3 Vpp

ViL SCLsBDAIRgUYIowoltEEp TCS34723 & TCS34727 0sa| Y

&ptical)Characteristics, Vpp =3V, Ta =25°C, AGAIN = 16x%, ATIME = 0xF6 (unless otherwise noted)
ote 1

DARAMETER TEST Red Channel Green Channel Blue Channel Clear Channel UNIT
CONDITIONS | MIN TYP MAX| MIN TYP MAX| MIN TYP MAX| MIN TYP MAX
;‘3; ool 0% 15% | 10% 42% | e5% 88% | 1.0 138 166
" - counts/
, Imadiance fAp=525nm | 0 25% | 60% 85% | 10% 45% | 132 166 200| W/
responsivity | Note 3 a2
7,:‘%; grenm 1 go% 110% | 0% 14% | 5% 24% | 156 195 234

NOTES: 1. The percentage shown represents the ratio of the respective red, green, or blue channel value to the clear channel value.
2. The 465 nm input irradiance is supplied by an InGaN light-emitting diode with the following characteristics:
dominant wavelength Ap = 465 nm, spectral halfwidth AL}z = 22 nm.
3. The 525 nm input irradiance is supplied by an InGaN light-emitting diode with the following characteristics:
dominant wavelength Ap = 525 nm, spectral halfwidth ALY2 = 35 nm.
4. The 615 nm input irradiance is supplied by a AlInGaP light-emitting diode with the following characteristics:
dominant wavelength Ap = 615 nm, spectral halfwidth ALY2 = 15 nm.

RGBC Characteristics, VDD = 3 V, TA = 25°C, AGAIN = 16x, AEN = 1 (unless otherwise noted)

PARAMETER TEST CONDITIONS MIN TYP MAX [UNIT

Dark ADC count value Ee = 0, AGAIN = 60X, ATIME = 0xD6 (100 ms) 0 1 5 | counts

ADC integration time step size ATIME = OxFF 2.27 24 2.56 ms

ADC number of integration steps

(Note 5) 1 256 | steps

ADC counts per step (Note 5) 0 1024 | counts

ADC count value (Note 5) ATIME = 0xCO (153.6 ms) 0 65535 | counts
4% 3.8 4 4.2

Gain scaling, relative to 1X gain

setting 16X 15 16 16.8 X
60X 58 60 63

NOTE 5: Parameter ensured by design and is not tested.

Copyright © 2012, TAOS Inc. The LUMENOLOGY © Company

TEXAS

ADVANCED
OPTOELECTRONIC
SOLUTIONS®

4 www.taosinc.com

TCS3472
COLOR LIGHT-TO-DIGITAL CONVERTER
with IR FILTER

TAOS135 - AUGUST 2012

Wait Characteristics, Vpp = 3 V, Ty = 25°C, WEN = 1 (unless otherwise noted)

PARAMETER TEST CONDITIONS I CHANNEL MIN TYP MAX | UNIT
Wait step size WTIME = OxFF 2.27 24 2.56 ms
Wait number of integration steps (Note 1) 1 256 | steps

NOTE 1: Parameter ensured by design and is not tested.

AC Electrical Characteristics, Vpp =3 V, Tp = 25°C (unless otherwise noted)

PARAMETERT TEST CONDITIONS MIN TYP MAX | UNIT
fsc) Clock frequency (I2C only) 0 400 | kHz
tBUF) Bus free time between start and stop condition 1:3 us
YinsTa) led time after (repeated)_ start condition. After 06 us

this period, the first clock is generated.
t(susTa) Repeated start condition setup time 0.6 us
tsusTo) Stop condition setup time 0.6 us
t(HDDAT) Data hold time 0 us
t(subaT) Data setup time 100 ns
tow) SCL clock low period 1.3 us
tHIGH) SCL clock high period 0.6 us
tF Clock/data fall time 300 ns
tr Clock/data rise time 300 ns
Ci Input pin capacitance 10 pF

1 Specified by design and characterization; not production tested.

PARAMETER MEASUREMENT INFORMATION

YLow) ¢, < g > 1
1 1 K]
scL Vim s AR\ :
ViLs - - A !
: ' '
’V: € YpsTa) ! » it t(susm)*‘ '4' :
l | ' .
tBuF) _4—’1 YHDDAT) 'P. <+ » 4' t(SUDAT) ' YsusTo) —Pw &—

P s P

Stop Start
Condition Condition

Figure 1. Timing Diagrams

The LUMENOLOGY © Company Copyright © 2012, TAOS Inc.

TEXAS

ADVANCED
OPTOELECTRONIC
SOLUTIONS®

www.taosinc.com 5

56

TCS3472

COLOR LIGHT-TO-DIGITAL CONVERTER

with IR FILTER

TAOS135 - AUGUST 2012

TYPICAL CHARACTERISTICS

PHOTODIODE SPECTRAL RESPONSIVITY

RGBC
1 ~ 1. T T
s ¥ Normalized to
0.9 J Clear
1/ @ 755 nm
0.8 }
Ta =25°C
z 07 v
% Red
S 0.6 Glreen
Q
3 05
m |
[|
2 i ‘ Blue
=
= bs o \ a
0.2
0.1 /)
o /
300 500 900 1100
A - Wavelength - nm
Figure 2
NORMALIZED Ipp
vs.
110 Vpp and TEMPERATURE
T
75°Cy
1089 //
1069 ~
o —
‘lq 104°] / _
: 4 / /’25? /
® 1029 ,/ ~ >
T 50°C, /
£ 100 - ~
g L~ occ, L~
S ogo A]
4 = 7
2 / /
L ge0 /
949 >
929
2.7 2.8 2.9 3 341 3.2 3.3
Vpp—V
Figure 4

Normalized Responsivity

NORMALIZED RESPONSIVITY
VS.
ANGULAR DISPLACEMENT

1.0

0.8 / \

o

r Optical Axis
"

0.4
0.2
0 -0 +0
-90 -60 -30 0 30 60 90
© - Angular Displacement - °
Figure 3
RESPONSIVITY TEMPERATURE
COEFFICIENT
10,000
4
/

Temperature Coefficient — ppm/ °C

1000 /

\\\

100
400 500 600 700 800 900 1000

A - Wavelength - nm

Figure 5

Copyright © 2012, TAOS Inc.

OTAOS

The LUMENOLOGY © Company

TEXAS

ADVANCED
OPTOELECTRONIC
SOLUTIONS®

www.taosinc.com

57

TCS3472
COLOR LIGHT-TO-DIGITAL CONVERTER
with IR FILTER

TAOS135 - AUGUST 2012

PRINCIPLES OF OPERATION

System States

An internal state machine provides system control of the RGBC and power management features of the device.
At power up, an internal power-on-reset initializes the device and puts it in a low-power Sleep state.

When a start condition is detected on the I12C bus, the device transitions to the Idle state where it checks the
Enable Register (0x00) PON bit. If PON is disabled, the device will return to the Sleep state to save power.
Otherwise, the device will remain in the Idle state until the RGBC function is enabled (AEN). Once enabled, the
device will execute the Wait and RGBC states in sequence as indicated in Figure 5. Upon completion and return
to Idle, the device will automatically begin a new Wait-RGBC cycle as long as PON and AEN remain enabled.

Figure 6. Simplified State Diagram

The LUMENOLOGY © Company — Copyright © 2012, TAOS Inc.

ADVANCED
OPTOELECTRONIC
SOLUTIONS®

TAOS

www.taosinc.com 7

58

TCS3472
COLOR LIGHT-TO-DIGITAL CONVERTER
with IR FILTER

TAOS135 - AUGUST 2012

RGBC Operation

The RGBC engine contains RGBC gain control (AGAIN) and four integrating analog-to-digital converters (ADC)
for the RGBC photodiodes. The RGBC integration time (ATIME) impacts both the resolution and the sensitivity
of the RGBC reading. Integration of all four channels occurs simultaneously and upon completion of the
conversion cycle, the results are transferred to the color data registers. This data is also referred to as channel
count.

The transfers are double-buffered to ensure that invalid data is not read during the transfer. After the
transfer, the device automatically moves to the next state in accordance with the configured state machine.

ATIME(r0x01) AGAIN(r0xO0F, b1:0)
2.4 ms to 614 ms 1x, 4x, 16x, 60x Gain

. .

RGBC Control

Clear ADC | Clear Data [—» CDATAH(r0x15), CDATA(r0x14)
§ Clear
hed Red ADC Red Data |—» RDATAH(r0x17), RDATA(r0x16)
e
= —» GDATAH(r0x19), GDATA(r0x18)

Green ADC | Green Data

= Blue ADC Blue Data [—» BDATAH(r0x1B), BDATA(r0x1A)
e

Figure 7. RGBC Operation

NOTE: In this document, the nomenclature uses the bit field name in italics followed by the register address
and bit number to allow the user to easily identify the register and bit that controls the function. For example,
the power on (PON) is in register 0x00, bit 0. This is represented as PON (r0x00:b0).

The registers for programming the integration and wait times are a 2’s compliment values. The actual time can
be calculated as follows:
ATIME = 256 - Integration Time / 2.4 ms

Inversely, the time can be calculated from the register value as follows:
Integration Time = 2.4 ms X (256 — ATIME)

For example, if a 100-ms integration time is needed, the device needs to be programmed to:
256 - (100/2.4) = 256 — 42 = 214 = 0xD6

Conversely, the programmed value of 0xCO would correspond to:
(256 — 0xCO) X 2.4 = 64 X 2.4 = 154 ms.

Copyright © 2012, TAOS Inc. The LUMENOLOGY © Company

TEXAS

ADVANCED
OPTOELECTRONIC
SOLUTIONS®

OTAOS

8 www.taosinc.com

TCS3472
COLOR LIGHT-TO-DIGITAL CONVERTER
with IR FILTER

TAOS135 - AUGUST 2012

Interrupts

The interrupt feature simplifies and improves system efficiency by eliminating the need to poll the sensor for
light intensity values outside of a user-defined range. While the interrupt function is always enabled and its
status is available in the status register (0x13), the output of the interrupt state can be enabled using the RGBC
interrupt enable (AIEN) field in the enable register (0x00).

Two 16-bit interrupt threshold registers allow the user to set limits below and above a desired light level. An
interrupt can be generated when the Clear data (CDATA) is less than the Clear interrupt low threshold (AILTx)
or is greater than the Clear interrupt high threshold (AIHTX).

It is important to note that the thresholds are evaluated in sequence, first the low threshold, then the high
threshold. As a result, if the low threshold is set above the high threshold, the high threshold is ignored and only
the low threshold is evaluated.

To further control when an interrupt occurs, the device provides a persistence filter. The persistence filter allows
the user to specify the number of consecutive out-of-range Clear occurrences before an interrupt is generated.
The persistence filter register (0x0C) allows the user to set the Clear persistence filter (APERS) value. See the
persistence filter register for details on the persistence filter value. Once the persistence filter generates an
interrupt, it will continue until a special function interrupt clear command is received (see command register).

AIHTH(r0x07), AIHTL(r0x06) APERS(r0x0C, b3:0)

Upper Limit Clear Persistence

Clear Clear

ADC Data
-3

Clear
= AILTH(r0x05), AILTL(r0x 04)

Figure 8. Programmable Interrupt

The LUMENOLOGY © Company Copyright © 2012, TAOS Inc.

TEXAS
ADVANCED
OPTOELECTRONIC

VTAOS

www.taosinc.com 9

TCS3472
COLOR LIGHT-TO-DIGITAL CONVERTER
with IR FILTER

TAOS135 - AUGUST 2012

System Timing

The system state machine shown in Figure 5 provides an overview of the states and state transitions that
provide system control of the device. This section highlights the programmable features, which affect the state
machine cycle time, and provides details to determine system level timing.

When the power management feature is enabled (WEN), the state machine will transition to the Wait state. The
wait time is determined by WLONG, which extends normal operation by 12X when asserted, and WTIME. The
formula to determine the wait time is given in the box associated with the Wait state in Figure 9.

When the RGBC feature is enabled (AEN), the state machine will transition through the RGBC Init and RGBC
ADC states. The RGBC Init state takes 2.4 ms, while the RGBC ADC time is dependent on the integration time
(ATIME). The formula to determine RGBC ADC time is given in the associated box in Figure 9. If an interrupt
is generated as a result of the RGBC cycle, it will be asserted at the end of the RGBC ADC.

12C Start
(Note 1)
v

\ [ATIME: 1 - 256 steps
= Time: 2.4 ms/step
\ Range: 2.4 ms ~ 614 ms

WEN
& AEN

Wait

A
/

WTIME: 1 ~ 256 steps

WLONG =0 WLONG = 1
Time: 2.4 ms/step 28.8 ms/step
Range: 2.4 ms~614ms 28.8 ms ~ 7.37s

Notes: 1. There is a 2.4 ms warm-up delay if PON is enabled. If PON is not enabled, the device will return to the Sleep state as shown.
2. PON, WEN, and AEN are fields in the Enable register (0x00).

Figure 9. Detailed State Diagram

Copyright © 2012, TAOS Inc. The LUMENOLOGY © Company

TEXAS

ADVANCED
OPTOELECTRONIC
SOLUTIONS®

OTAOS

10 www.taosinc.com

61

TCS3472
COLOR LIGHT-TO-DIGITAL CONVERTER
with IR FILTER

TAOS135 - AUGUST 2012

Power Management

Power consumption can be managed with the Wait state, because the Wait state typically consumes only 65 pA
of Ipp current. An example of the power management feature is given below. With the assumptions provided
in the example, average Ipp is estimated to be 152 pA.

Table 1. Power Management

SYSTEM STATE MACHINE | PROGRAMMABLE TYPICAL

STATE PARAMETER PROGRAMMED VALUE DURATION CURRENT
WTIME OxEE

Wait WLONG o 432 ms 0.065 mA

RGBC Init 2.40 ms 0.235 mA

RGBC ADC ATIME OxEE 43.2 ms 0.235 mA

Average Ipp Current = ((43.2 X 0.065) + (43.2 X 0.235) + (2.40 X 0.235)) / 89 ~ 152 nA

Keeping with the same programmed values as the example, Table 2 shows how the average Ipp current is
affected by the Wait state time, which is determined by WEN, WTIME, and WLONG. Note that the worst-case
current occurs when the Wait state is not enabled.

Table 2. Average Ipp Current

WEN WTIME WLONG | WAIT STATE AVERAGE Ipp CURRENT
0 n/a n/a 0 ms 291 A

1 OxFF 0 2.40 ms 280 uA

1 OxEE 0 43.2 ms 152 pA

1 0x00 0 614 ms 82 uA

1 0x00 1 7.37 s 67 uA

The LUMENOLOGY © Company

TAOS

www.taosinc.com

TEXAS

ADVANCED
OPTOELECTRONIC
SOLUTIONS®

Copyright © 2012, TAOS Inc.

62

TCS3472
COLOR LIGHT-TO-DIGITAL CONVERTER
with IR FILTER

TAOS135 - AUGUST 2012

I2C Protocol

Interface and control are accomplished through an 12C serial compatible interface (standard or fast mode) to
a set of registers that provide access to device control functions and output data. The devices support the 7-bit
I2C addressing protocol.

The I12C standard provides for three types of bus transaction: read, write, and a combined protocol (Figure 10).
During a write operation, the first byte written is a command byte followed by data. In a combined protocol, the
first byte written is the command byte followed by reading a series of bytes. If a read command is issued, the
register address from the previous command will be used for data access. Likewise, if the MSB of the command
is not set, the device will write a series of bytes at the address stored in the last valid command with a register
address. The command byte contains either control information or a 5-bit register address. The control
commands can also be used to clear interrupts.

The I2C bus protocol was developed by Philips (now NXP). For a complete description of the [2C protocol, please
review the NXP I12C design specification at http://www.i2c-bus.org/references/.

Acknowledge (0)

Not Acknowledged (1)
Stop Condition

Read (1)

Start Condition
Repeated Start Condition
Write (0)

Continuation of protocol
Master-to-Slave
Slave-to-Master

00: sevmoz>

1 7 1 1 8 1 8 1 1
ISI Slave Address | w | A I Command Code | A | Data Byte | A | IE

12C Write Protocol

1 7 1 1 8 1 8 1 1
ISl Slave Address | R | Al Data |A Data | A=

12C Read Protocol

1 7 1 1
Isl Slave Address | w | A | Command Code I A | Srl Slave Address I R | A '———|

-
|
L— —| Data |T| Data ITI E

12C Read Protocol — Combined Format

Figure 10. I12C Protocols

Copyright © 2012, TAOS Inc. - The LUMENOLOGY © Company

ADVANCED
OPTOELECTRONIC
SOLUTIONS®

OTAOS

12 www.taosinc.com

63

TCS3472
COLOR LIGHT-TO-DIGITAL CONVERTER
with IR FILTER

TAOS135 - AUGUST 2012

Register Set

The TCS3472 is controlled and monitored by data registers and a command register accessed through the
serial interface. These registers provide for a variety of control functions and can be read to determine results
of the ADC conversions. The register set is summarized in Table 3.

Table 3. Register Address

ADDRESS RESISTER NAME R/W REGISTER FUNCTION RESET VALUE
- COMMAND w Specifies register address 0x00
0x00 ENABLE R/W Enables states and interrupts 0x00
0x01 ATIME R/W RGBC time OxFF
0x03 WTIME R/W [Wait time OxFF
0x04 AILTL R/W | Clear interrupt low threshold low byte 0x00
0x05 AILTH R/W | Clear interrupt low threshold high byte 0x00
0x06 AIHTL R/W [Clear interrupt high threshold low byte 0x00
0x07 AIHTH R/W [Clear interrupt high threshold high byte 0x00
0x0C PERS R/W | Interrupt persistence filter 0x00
0x0D CONFIG R/W | Configuration 0x00
O0xOF CONTROL R/W [Control 0x00
ox12 ID R Device ID ID
0x13 STATUS R Device status 0x00
0x14 CDATAL R Clear data low byte 0x00
0x15 CDATAH R Clear data high byte 0x00
0x16 RDATAL R Red data low byte 0x00
0x17 RDATAH R Red data high byte 0x00
0x18 GDATAL R Green data low byte 0x00
0x19 GDATAH R Green data high byte 0x00
Ox1A BDATAL R Blue data low byte 0x00
0x1B BDATAH R Blue data high byte 0x00

The mechanics of accessing a specific register depends on the specific protocol used. See the section on 12C
protocols on the previous pages. In general, the COMMAND register is written first to specify the specific
control-status-data register for subsequent read/write operations.

The LUMENOLOGY © Company

TEXAS

ADVANCED
OPTOELECTRONIC
SOLUTIONS®

TAOS

www.taosinc.com

Copyright © 2012, TAOS Inc.

64

TCS3472
COLOR LIGHT-TO-DIGITAL CONVERTER
with IR FILTER

TAOS135 - AUGUST 2012

Command Register

The command register specifies the address of the target register for future write and read operations.

Table 4. Command Register

7 6 5 4 3 2 1 0
commano | cwp | TYPE ADDRISF --
FIELD BITS DESCRIPTION
CMD 7 Select Command Register. Must write as 1 when addressing COMMAND register.
TYPE 6:5 Selects type of transaction to follow in subsequent data transfers:
FIELD VALUE INTEGRATION TIME
00 Repeated byte protocol transaction
01 Auto-increment protocol transaction
10 Reserved — Do not use
1 Special function — See description below

Byte protocol will repeatedly read the same register with each data access.
Block protocol will provide auto-increment function to read successive bytes.

ADDR/SF 4:0 Address field/special function field. Depending on the transaction type, see above, this field either
specifies a special function command or selects the specific control-status-data register for subsequent
read and write transactions. The field values listed below only apply to special function commands:

FIELD VALUE READ VALUE
00110 Clear channel interrupt clear
other Reserved — Do not write

The Clear channel interrupt clear special function clears any pending interrupt and is self-clearing.

Copyright © 2012, TAOS Inc. The LUMENOLOGY © Company

TEXAS

ADVANCED
OPTOELECTRONIC
SOLUTIONS®

OTAOS

14 www.taosinc.com

TCS3472
COLOR LIGHT-TO-DIGITAL CONVERTER
with IR FILTER

TAOS135 - AUGUST 2012

Enable Register (0x00)

The Enable register is used primarily to power the TCS3472 device on and off, and enable functions and
interrupts as shown in Table 5.

Table 5. Enable Register

7 6 5 4 3 2 1 0
ENABLE Reserved | AIEN I WEN | Reserved | AEN | POk [oorTes
FIELD BITS DESCRIPTION
Reserved 75 Reserved. Write as 0.
AIEN 4 RGBC interrupt enable. When asserted, permits RGBC interrupts to be generated.
Wait enable. This bit activates the wait feature. Writing a 1 activates the wait timer. Writing a 0 disables the
WEN 3 e
wait timer.
Reserved 2 Reserved. Write as 0.
RGBC enable. This bit actives the two-channel ADC. Writing a 1 activates the RGBC. Writing a 0 disables
AEN 1
the RGBC.
PON 1.2 0 Power ON. This bit activates the internal oscillator to permit the timers and ADC channels to operate.
Writing a 1 activates the oscillator. Writing a 0 disables the oscillator.
NOTES: 1. See Power Management section for more information.

2. A minimum interval of 2.4 ms must pass after PON is asserted before an RGBC can be initiated.

The LUMENOLOGY © Company

Copyright © 2012, TAOS Inc.
TEXAS

ADVANCED
OPTOELECTRONIC

VTAOS

www.taosinc.com 15

66

TCS3472

COLOR LIGHT-TO-DIGITAL CONVERTER
with IR FILTER

TAOS135 - AUGUST 2012

RGBC Timing Register (0x01)
The RGBC timing register controls the internal integration time of the RGBC clear and IR channel ADCs in

2.4-ms increments. Max RGBC Count = (256 — ATIME) X 1024 up to a maximum of 65535.

Table 6. RGBC Timing Register

FIELD BITS DESCRIPTION

ATIME 7:0 VALUE INTEG_CYCLES TIME MAX COUNT
OxFF 1 2.4 ms 1024
O0xF6 10 24 ms 10240
0xD5 42 101 ms 43008
0xCO0 64 154 ms 65535
0x00 256 700 ms 65535

Wait Time Register (0x03)

Wait time is set 2.4 ms increments unless the WLONG bit is asserted, in which case the wait times are 12X
longer. WTIME is programmed as a 2’s complement number.

Table 7. Wait Time Register

FIELD BITS DESCRIPTION

WTIME 7:0 REGISTER VALUE WAIT TIME TIME (WLONG = 0) TIME (WLONG = 1)
OxFF 1 24 ms 0.029 sec
0xAB 85 204 ms 2.45 sec
0x00 256 614 ms 7.4 sec

Copyright © 2012, TAOS Inc.

16

OTAOS

www.taosinc.com

TEXAS

ADVANCED
OPTOELECTRONIC
SOLUTIONS®

The LUMENOLOGY © Company

67

68

TCS3472
COLOR LIGHT-TO-DIGITAL CONVERTER
with IR FILTER

TAOS135 - AUGUST 2012

RGBC Interrupt Threshold Registers (0x04 - 0x07)

The RGBC interrupt threshold registers provides the values to be used as the high and low trigger points for
the comparison function for interrupt generation. If the value generated by the clear channel crosses below the
lower threshold specified, or above the higher threshold, an interrupt is asserted on the interrupt pin.

Table 8. RGBC Interrupt Threshold Registers

REGISTER ADDRESS BITS DESCRIPTION
AILTL 0x04 7:0 RGBC clear channel low threshold lower byte
AILTH 0x05 7:0 RGBC clear channel low threshold upper byte
AIHTL 0x06 7:0 RGBC clear channel high threshold lower byte
AIHTH 0x07 7:0 RGBC clear channel high threshold upper byte

Persistence Register (0x0C)

The persistence register controls the filtering interrupt capabilities of the device. Configurable filtering is
provided to allow interrupts to be generated after each integration cycle or if the integration has produced a result
that is outside of the values specified by the threshold register for some specified amount of time.

Table 9. Persistence Register

7 6 5 4 3 2 1 0
Address
PERS Reserved APERS 0x0C
FIELD BITS DESCRIPTION
PPERS 7:4 Reserved
APERS 3:0 Interrupt persistence. Controls rate of interrupt to the host processor.
FIELD VALUE | MEANING INTERRUPT PERSISTENCE FUNCTION
0000 Every Every RGBC cycle generates an interrupt
0001 1 1 clear channel value outside of threshold range
0010 2 2 clear channel consecutive values out of range
0011 3 3 clear channel consecutive values out of range
0100 5 5 clear channel consecutive values out of range
0101 10 10 clear channel consecutive values out of range
0110 15 15 clear channel consecutive values out of range
0111 20 20 clear channel consecutive values out of range
1000 25 25 clear channel consecutive values out of range
1001 30 30 clear channel consecutive values out of range
1010 35 35 clear channel consecutive values out of range
1011 40 40 clear channel consecutive values out of range
1100 45 45 clear channel consecutive values out of range
1101 50 50 clear channel consecutive values out of range
1110 55 55 clear channel consecutive values out of range
1111 60 60 clear channel consecutive values out of range

The LUMENOLOGY © Company Copyright © 2012, TAOS Inc.

TEXAS
ADVANCED
OPTOELECTRONIC

VTAOS

www.taosinc.com 17

TCS3472
COLOR LIGHT-TO-DIGITAL CONVERTER
with IR FILTER

TAOS135 - AUGUST 2012

Configuration Register (0x0D)

The configuration register sets the wait long time.

Table 10. Configuration Register

7 6 5 4 3 2 1 0
Address
CONFIG Reserved | WLONG | Reserved| 0x0D
FIELD BITS DESCRIPTION
Reserved 7:2 Reserved. Write as 0.

WLONG 1 Wait Long. When asserted, the wait cycles are increased by a factor 12X from that programmed in the
WTIME register.

Reserved 0 Reserved. Write as 0.

Control Register (0xOF)

The Control register provides eight bits of miscellaneous control to the analog block. These bits typically control
functions such as gain settings and/or diode selection.

Table 11. Control Register

7 6 5 4 3 2 1 0
CONTROL Reserved AGAIN pusress
FIELD BITS DESCRIPTION
Reserved 72 Reserved. Write bits as 0
AGAIN 1:0 RGBC Gain Control.
FIELD VALUE RGBC GAIN VALUE
00 1X gain
01 4X gain
10 16X gain
1 60X gain
ID Register (0x12)
The ID Register provides the value for the part number. The ID register is a read-only register.
Table 12. ID Register
7 6 5 4 3 2 1 0
Address
N D 0x12
FIELD BITS DESCRIPTION

0x44 = TCS34721 and TCS34725

ID 7:0 Part number identification

0x4D = TCS34723 and TCS34727

Copyright © 2012, TAOS Inc. The LUMENOLOGY © Company

“ TEXAS
ADVANCED
OPTOELECTRONIC
SOLUTIONS®

18 www.taosinc.com

69

70

TCS3472

COLOR LIGHT-TO-DIGITAL CONVERTER

with IR FILTER

TAOS135 - AUGUST 2012

Status Register (0x13)

The Status Register provides the internal status of the device. This register is read only.

Table 13. Status Register

7 6 5 4 3 2 1 0
STATUS Reserved | AINT | Reserved | AVALID | e
FIELD BIT DESCRIPTION
Reserved 7:5 Reserved.
AINT 4 RGBC clear channel Interrupt.
Reserved 3:1 Reserved.
AVALID 0 RGBC Valid. Indicates that the RGBC channels have completed an integration cycle.

RGBC Channel Data Registers (0x14 - 0x1B)

Clear, red, green, and blue data is stored as 16-bit values. To ensure the data is read correctly, a two-byte read
I2C transaction should be used with a read word protocol bit set in the command register. With this operation,
when the lower byte register is read, the upper eight bits are stored into a shadow register, which is read by a
subsequent read to the upper byte. The upper register will read the correct value even if additional ADC
integration cycles end between the reading of the lower and upper registers.

Table 14. ADC Channel Data Registers

REGISTER ADDRESS BITS DESCRIPTION
CDATA 0x14 7:0 Clear data low byte
CDATAH 0x15 7:0 Clear data high byte
RDATA 0x16 7:0 Red data low byte
RDATAH ox17 7:0 Red data high byte
GDATA 0x18 7:0 Green data low byte
GDATAH 0x19 7:0 Green data high byte
BDATA Ox1A 7:0 Blue data low byte
BDATAH 0x1B 7:0 Blue data high byte

The LUMENOLOGY © Company

TEXAS

ADVANCED
OPTOELECTRONIC
SOLUTIONS®

TAOS

www.taosinc.com

Copyright © 2012, TAOS Inc.

TCS3472
COLOR LIGHT-TO-DIGITAL CONVERTER
with IR FILTER

TAOS135 - AUGUST 2012

APPLICATION INFORMATION: HARDWARE

PCB Pad Layout

Suggested PCB pad layout guidelines for the Dual Flat No-Lead (FN) surface mount package are shown in
Figure 11.

<&

|
<+———1000 —p|

)
|«——1000 —>|

Note: Pads can be 2500
extended further if hand

soldering is needed.

650

- GEE -

650

2 ¥ B

NOTES: A. All linear dimensions are in micrometers.
B. This drawing is subject to change without notice.

Figure 11. Suggested FN Package PCB Layout

Copyright © 2012, TAOS Inc. - The LUMENOLOGY © Company

ADVANCED
OPTOELECTRONIC
SOLUTIONS®

OTAOS

20 www.taosinc.com

71

TCS3472
COLOR LIGHT-TO-DIGITAL CONVERTER
with IR FILTER

TAOS135 - AUGUST 2012

PACKAGE INFORMATION

PACKAGE FN Dual Flat No-Lead
TOP VIEW
< 877 + 75 P4 P 369 PIN OUT
T TOP VIEW
871
+75 I L
¢ Vop 1 6 SDA
T L — 1
406 | — —
$ 2400 = 75 SCL 2 5 INT
g — Iy
| — 4
H GND 3 4 NC

|4— 2000 = 75 —>|
Photodiode Array Area

END VIEW SIDE VIEW
| 650 = 50 il
nozr’r?isnal i | | | | | | 2038
s [+
BOTTOM VIEW 750100 B by
I ‘ 650 = 50

PIN 1 (i 300 = 50 @

Lead Free

NOTES: All linear dimensions are in micrometers. Dimension tolerance is + 20 um unless otherwise noted.

The die is centered within the package within a tolerance of + 3 mils.

Package top surface is molded with an electrically nonconductive clear plastic compound having an index of refraction of 1.55.
Contact finish is copper alloy A194 with pre-plated NiPdAu lead finish.

This package contains no lead (Pb).

This drawing is subject to change without notice.

mmoow>»

The LUMENOLOGY © Company Copyright © 2012, TAOS Inc.

TEXAS
ADVANCED

Figure 12. Package FN — Dual Flat No-Lead Packaging Configuration
OPTOELECTRONIC

VTAOS

www.taosinc.com 21

TCS3472

COLOR LIGHT-TO-DIGITAL CONVERTER
with IR FILTER

TAOS135 - AUGUST 2012

CARRIER TAPE AND REEL INFORMATION

TOP VIEW
«»—2.00:005 —_—
4.00 —¢ > < »— 400 21.50 l
2 "
0.30 B
+0.
800" 070 | _ L —
) ® © O) G
3.50 % 0.05
v
2050
+0.05 v v
A A L »8
DETAIL A DETAIL B

5° Max /V\ ’ T \ /‘\ 5° Max
0.254
2.21 = 0.05 —‘4—” +0.02 0.83 = 0.05 2 61 + 0.05
Ao

Ko B,

@ O
G 5

NOTES: A. Alllinear dimensions are in millimeters. Dimension tolerance is + 0.10 mm unless otherwise noted.

A

B. The dimensions on this drawing are for illustrative purposes only. Dimensions of an actual carrier may vary slightly.
C. Symbols on drawing A,, B,, and K, are defined in ANSI EIA Standard 481-B 2001.

D. Each reel is 178 millimeters in diameter and contains 3500 parts.

E. TAOS packaging tape and reel conform to the requirements of EIA Standard 481-B.

F. In accordance with EIA standard, device pin 1 is located next to the sprocket holes in the tape.

G. This drawing is subject to change without notice.

Figure 13. Package FN Carrier Tape

Copyright © 2012, TAOS Inc.

TEXAS The LUMENOLOGY © Company
ADVANCED

OPTOELECTRONIC

SOLUTIONS®

22 www.taosinc.com

73

74

TCS3472
COLOR LIGHT-TO-DIGITAL CONVERTER
with IR FILTER

TAOS135 - AUGUST 2012

SOLDERING INFORMATION

The FN package has been tested and has demonstrated an ability to be reflow soldered to a PCB
substrate. The process, equipment, and materials used in these test are detailed below.

The solder reflow profile describes the expected maximum heat exposure of components during the solder
reflow process of product on a PCB. Temperature is measured on top of component. The components should
be limited to a maximum of three passes through this solder reflow profile.

Table 15. Solder Reflow Profile

PARAMETER REFERENCE DEVICE
Average temperature gradient in preheating 2.5°C/sec
Soak time tsoak 2 to 3 minutes
Time above 217°C (T1) t4 Max 60 sec
Time above 230°C (T2) to Max 50 sec
Time above Tpeak —10°C (T3) t3 Max 10 sec
Peak temperature in reflow Tpeak 260°C
Temperature gradient in cooling Max —-5°C/sec

Not to scale — for reference only
Tpeak
T3
T2
Ty
—
(6]
S
>
<
=]
=
©
—
(7]
Q.
§
=
Time (sec) “«— t3—>
“—tHh—>
—— ts0ak > < t 4

Figure 14. Solder Reflow Profile Graph

The LUMENOLOGY © Company Copyright © 2012, TAOS Inc.

TEXAS
ADVANCED
OPTOELECTRONIC

VTAOS

www.taosinc.com 23

TCS3472
COLOR LIGHT-TO-DIGITAL CONVERTER
with IR FILTER

TAOS135 - AUGUST 2012

STORAGE INFORMATION

Moisture Sensitivity

Optical characteristics of the device can be adversely affected during the soldering process by the release and
vaporization of moisture that has been previously absorbed into the package. To ensure the package contains
the smallest amount of absorbed moisture possible, each device is dry-baked prior to being packed for shipping.
Devices are packed in a sealed aluminized envelope called a moisture barrier bag with silica gel to protect them
from ambient moisture during shipping, handling, and storage before use.

The Moisture Barrier Bags should be stored under the following conditions:

Temperature Range <40°C

Relative Humidity < 90%
Total Time No longer than 12 months from the date code on the aluminized envelope if
unopened.

Rebaking of the reel will be required if the devices have been stored unopened for more than 12 months and
the Humidity Indicator Card shows the parts to be out of the allowable moisture region.

Opened reels should be used within 168 hours if exposed to the following conditions:
Temperature Range < 30°C
Relative Humidity < 60%

If rebaking is required, it should be done at 50°C for 12 hours.

The FN package has been assigned a moisture sensitivity level of MSL 3.

Copyright © 2012, TAOS Inc.

24

The LUMENOLOGY © Company
TEXAS

ADVANCED
OPTOELECTRONIC
SOLUTIONS®

OTAOS

www.taosinc.com

TCS3472
COLOR LIGHT-TO-DIGITAL CONVERTER
with IR FILTER

TAOS135 - AUGUST 2012

PRODUCTION DATA — information in this document is current at publication date. Products conform to
specifications in accordance with the terms of Texas Advanced Optoelectronic Solutions, Inc. standard
warranty. Production processing does not necessarily include testing of all parameters.

LEAD-FREE (Pb-FREE) and GREEN STATEMENT

Pb-Free (RoHS) TAOS’ terms Lead-Free or Pb-Free mean semiconductor products that are compatible with the current
RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous
materials. Where designed to be soldered at high temperatures, TAOS Pb-Free products are suitable for use in specified
lead-free processes.

Green (RoHS & no Sb/Br) TAOS defines Green to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and
Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

Important Information and Disclaimer The information provided in this statement represents TAOS’ knowledge and
belief as of the date that it is provided. TAOS bases its knowledge and belief on information provided by third parties,
and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate
information from third parties. TAOS has taken and continues to take reasonable steps to provide representative
and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and
chemicals. TAOS and TAOS suppliers consider certain information to be proprietary, and thus CAS numbers and other
limited information may not be available for release.

NOTICE

Texas Advanced Optoelectronic Solutions, Inc. (TAOS) reserves the right to make changes to the products contained in this
document to improve performance or for any other purpose, or to discontinue them without notice. Customers are advised
to contact TAOS to obtain the latest product information before placing orders or designing TAOS products into systems.

TAOS assumes no responsibility for the use of any products or circuits described in this document or customer product
design, conveys no license, either expressed or implied, under any patent or other right, and makes no representation that
the circuits are free of patent infringement. TAOS further makes no claim as to the suitability of its products for any particular
purpose, nor does TAOS assume any liability arising out of the use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages.

TEXAS ADVANCED OPTOELECTRONIC SOLUTIONS, INC. PRODUCTS ARE NOT DESIGNED OR INTENDED FOR
USE IN CRITICAL APPLICATIONS IN WHICH THE FAILURE OR MALFUNCTION OF THE TAOS PRODUCT MAY
RESULT IN PERSONAL INJURY OR DEATH. USE OF TAOS PRODUCTS IN LIFE SUPPORT SYSTEMS IS EXPRESSLY
UNAUTHORIZED AND ANY SUCH USE BY A CUSTOMER IS COMPLETELY AT THE CUSTOMER’S RISK.

LUMENOLOGY, TAOS, the TAOS logo, and Texas Advanced Optoelectronic Solutions are registered trademarks of Texas Advanced
Optoelectronic Solutions Incorporated.

The LUMENOLOGY © Company

Copyright © 2012, TAOS Inc.
TEXAS

ADVANCED
OPTOELECTRONIC

VTAOS

www.taosinc.com 25

76

TCS3472

COLOR LIGHT-TO-DIGITAL CONVERTER

with IR FILTER

TAOS135 - AUGUST 2012

Copyright © 2012, TAOS Inc.

26

TAOS

www.taosinc.com

TEXAS

ADVANCED
OPTOELECTRONIC
SOLUTIONS®

The LUMENOLOGY © Company

77

78

Appendix D: SEN0296 Datasheet

DFROBOT

CRIVE THE FUTURE

RP-S40-ST Thin Film Pressure Sensor
40mmx40mm
SKU:SEN0296

INTRODUCTION

This is a square flexible thin film pressure sensor of short legs with a side length of 40mm,
which can be used to realize highly sensitive detection of pressure. The sensor is durable and
designed to sense static and dynamic pressure in a high respond speed. Its advantages of
recording the intensity and frequency of force make it widely used in all kinds of applications,
such as, pressure switch, bed monitoring system, intelligent sneaker and medical device
system. These sensors are also very easy to use.

RP-C flexible pressure sensor is made of ultra-thin film of excellent mechanical
property, excellent conductive materials and nanometre pressure sensitive layers.
There are thin film and pressure sensitive layer on the upper layer of the sensor, and
thin film and conductive circuit on the lower layer. These two layers are glued together
by double sided tape. When outside pressure applies to the active area, the
disconnected circuit of the lower layer will be connected through the pressure sensitive
layer of the upper layer, by which to convert pressure into resistance. The output
resistance decreases as pressure increases.

79

80

& v 00 N ® v

R(ohms)

o =» N W

Force vs Resistance

40.00
8
g\
8 =
& =
X
\7Active Area
36mmx36mm
i
; 254
762
RP-S40-ST Dimension Diagram
R@F for s40
_s s ——2
-1
—
= ——#3
0 10'00 20.00 3000 4000 5000 6000
Flg)

81

SPECIFICATION

. Thickness: 0.45mm

e« Trigger Force: 20g, triggered (default resistance<200kQ)
. Pressure Measuring Range: 20g~10kg

. Static Pressure & Dynamic Pressure Measurement (within the frequency of 10Hz)
. Initial Resistance: >10MQ

. Activation Time: <0.01S

. Operating Temperature: -40°C~+85°C

. Lifespan: >1million times

. Hysteresis: +10%, (RF+-RF-)/FR+, 1000g Force

. Response Time: <10ms

. EMI: Not generate

. EDS: Not generate

. Drift: <56%, 2.5Kg Force , Static load 24H

SHIPPING LIST

° RP-S40-ST Thin Film Pressure Sensor x1

v

LR R R R Y T R L
0 1 2 3 4 5

https://www.dfrobot.com/product-1842.html?search=SEN0296/5-9-19

83

Appendix E: ESP32 Datasheet

ESP32-WROOM-32

Datasheet

84

85

About This Document

This document provides the specifications for the ESP32-WROOM-32 module.

Document Updates

Please always refer to the latest version on https://www.espressif.com/en/support/download/documents.

Revision History

For revision history of this document, please refer to the last page.

Documentation Change Notification

Espressif provides email notifications to keep customers updated on changes to technical documentation.
Please subscribe at www.espressif.com/en/subscribe. Note that you need to update your subscription to receive
notifications of new products you are not currently subscribed to.

Certification

Download certificates for Espressif products from www.espressif.com/en/certificates.

Not Recommended For New Designs (NRND)

Contents
1 Overview 6
2 Pin Definitions 8
24 Pin Layout 8
2.2 Pin Description 8
2.3 Strapping Pins 10
3 Functional Description 12
3.1 CPU and Internal Memory 12
3.2 External Flash and SRAM 12
3.3 Crystal Oscillators 12
3.4 RTC and Low-Power Management 13
4 Peripherals and Sensors 14
5 Electrical Characteristics 15
5.1 Absolute Maximum Ratings 15
5.2 Recommended Operating Conditions 15
5.8 DC Characteristics (3.3 V, 25 °C) 15
5.4 Wi-Fi Radio 16
5.5 Bluetooth LE Radio 17
5.5.1 Receiver 17
5.56.2 Transmitter 17
6 Schematics 18
7 Peripheral Schematics 19
8 Physical Dimensions 20
9 Recommended PCB Land Pattern 21
10 Product Handling 22
10.1 Storage Conditions 22
10.2 Electrostatic Discharge (ESD) 22
10.3 Reflow Profile 22
10.4 Ultrasonic Vibration 23
11 Related Documentation and Resources 24
Revision History 25

Not Recommended For New Designs (NRND)

86

List of Tables

= © 0 N O O b W N =

ESP32-WROOM-32 Specifications

Pin Definitions

Strapping Pins

Parameter Descriptions of Setup and Hold Times for the Strapping Pins
Absolute Maximum Ratings

Recommended Operating Conditions

DC Characteristics (3.3 V, 25 °C)

Wi-Fi Radio Characteristics

Receiver Characteristics — Bluetooth LE

Transmitter Characteristics — Bluetooth LE

Not Recommended For New Designs (NRND)

10
1
15
15
15
16
17
17

87

List of Figures

N o O N =

ESP32-WROOM-32 Pin Layout (Top View)
Setup and Hold Times for the Strapping Pins
ESP32-WROOM-32 Schematics
ESP32-WROOM-32 Peripheral Schematics
Physical Dimensions of ESP32-WROOM-32
Recommended PCB Land Pattern

Reflow Profile

1
18
19
20
21
22

Not Recommended For New Designs (NRND)

88

89

1 Overview

1 Overview

ESP32-WROOM-32 is a powerful, generic Wi-Fi + Bluetooth® + Bluetooth LE MCU module that targets a wide
variety of applications, ranging from low-power sensor networks to the most demanding tasks, such as voice
encoding, music streaming and MP3 decoding.

At the core of this module is the ESP32-DOWDQ6 chip*. The chip embedded is designed to be scalable and
adaptive. There are two CPU cores that can be individually controlled, and the CPU clock frequency is adjustable
from 80 MHz to 240 MHz. The chip also has a low-power coprocessor that can be used instead of the CPU to
save power while performing tasks that do not require much computing power, such as monitoring of
peripherals. ESP32 integrates a rich set of peripherals, ranging from capacitive touch sensors, SD card interface,
Ethernet, high-speed SPI, UART, 12S, and 12C.

Note:
* For details on the part numbers of the ESP32 family of chips, please refer to the document £ESP32 Datasheet.

The integration of Bluetooth, Bluetooth LE and Wi-Fi ensures that a wide range of applications can be targeted,
and that the module is all-around: using Wi-Fi allows a large physical range and direct connection to the Internet
through a Wi-Fi router, while using Bluetooth allows the user to conveniently connect to the phone or broadcast
low energy beacons for its detection. The sleep current of the ESP32 chip is less than 5 uA, making it suitable for
battery powered and wearable electronics applications. The module supports a data rate of up to 150 Mbps,
and 20 dBm output power at the antenna to ensure the widest physical range. As such the module does offer
industry-leading specifications and the best performance for electronic integration, range, power consumption,
and connectivity.

The operating system chosen for ESP32 is freeRTOS with LwlIP; TLS 1.2 with hardware acceleration is built in as
well. Secure (encrypted) over the air (OTA) upgrade is also supported, so that users can upgrade their products
even after their release, at minimum cost and effort.

Table 1 provides the specifications of ESP32-WROOM-32.

Table 1: ESP32-WROOM-32 Specifications

Categories ltems Specifications
RF certification See certificates for ESP32-WROOM-32
Certification Wi-Fi Certificat??n . Wi-Fi Alliance
Bluetooth certification BQB
Green certification RoHS/REACH
Test Reliablity HTOL/HTSL/UHAST/TCT/ESD
802.11 b/g/n (802.11n up to 150 Mbps)
WilFi Protocols A-MPDU and A-MSDU aggregation and 0.4 us guard interval
support

Center frequency range of oper-
) 2412 ~ 2484 MHz
ating channel

Protocols Bluetooth v4.2 BR/EDR and Bluetooth LE specification
NZIF receiver with -97 dBm sensitivity
Bluetooth Radio Class-1, class-2 and class-3 transmitter
AFH

Not Recommended For New Designs (NRND)

Espressif Systems 6 ESP32-WROOM-32 Datasheet v3.4
Submit Documentation Feedback

1 Overview
Categories [tems Specifications
Audio CVSD and SBC
SD card, UART, SPI, SDIO, 12C, LED PWM, Motor PWM,
) 12S, IR, pulse counter, GPIO, capacitive touch sensor, ADC,
Module interfaces . : ;
DAC, Two-Wire Automotive Interface (TWAI®), compatible
with ISO11898-1 (CAN Specification 2.0)
Integrated crystal 40 MHz crystal
Integrated SPI flash 4 MB
Hardware Operating voltage/Power supply | 3.0V~ 3.6V
Operating current Average: 80 mA
Minimum current delivered by
500 mA
power supply
Recommended operating ambi-
—40 °C ~ +85 °C
ent temperature range
Package size 18 mm x 25.5 mm x 3.10 mm
Moisture sensitivity level (MSL) Level 3
Not Recommended For New Designs (NRND)
Espressif Systems 7 ESP32-WROOM-32 Datasheet v3.4

Submit Documentation Feedback

90

2 Pin Definitions

2 Pin Definitions
2.1 Pin Layout

Keepout Zone
1 ﬂ GND GND | 38
2 ﬂ 3v3 1023 |q 37
3 ﬂ EN 1022 E 36
4 ﬂ SENSOR_VP ™Do | 35
5 ﬂ SENSOR_VN RXDO |(34
6 ﬂ 1034 1021 | 33
39 GND

7 ﬂ 1035 NC | 82
8 ﬂ 1032 1019 |q 31
9 ﬂ 1033 1018 | 30
10 ﬂ 1025 105 E 29
11 ﬂ 1026 1017 E 28
12 ﬂ 1027 016 |q 27
13 ﬂ 1014 04 |q 26
14 p] 1012 2 2 g &g % 2 g8 8 2 5 100 |q 25

[~ A1 A1 [A] TA1 [A] A1 A1 [A] [A]

& » I »® © 8 R 8 8 R

Figure 1: ESP32-WROOM-32 Pin Layout (Top View)

2.2 Pin Description
ESP32-WROOM-32 has 38 pins. See pin definitions in Table 2.

Table 2: Pin Definitions

Name No. Type Function

GND 1 P Ground

3V3 2 P Power supply

EN 8 | Module-enable signal. Active high.

Not Recommended For New Designs (NRND)
Espressif Systems 8 ESP32-WROOM-32 Datasheet v3.4
Submit Documentation Feedback

2 Pin Definitions

Name No. Type Function

SENSOR_VP | 4 | GPIO36, ADC1_CHO0, RTC_GPIO0

SENSOR_WN | 5 | GPIO39, ADC1_CH3, RTC_GPIO3

1034 6 | GPIO34, ADC1_CH®6, RTC_GPIO4

1035 7 | GPIO35, ADC1_CH7, RTC_GPIO5

(042 5 Vo GPIO32, XTAL_32K_P (32.768 kHz crystal oscillator input), ADC1_CH4,
TOUCH9, RTC_GPIO9

1033 9 Vo GPIO33, XTAL_32K_N (32.768 kHz crystal oscillator output), ADC1_CHS5,
TOUCHS, RTC_GPIO8

1025 10 I/0 GPIO25, DAC_1, ADC2_CH8, RTC_GPIO6, EMAC_RXDO

1026 11 I/0 GPI026, DAC_2, ADC2_CH9, RTC_GPIO7, EMAC_RXD1

1027 12 I/0 GPI027, ADC2_CH7, TOUCH7, RTC_GPIO17, EMAC_RX_DV

014 13 Vo GPIO14, ADC2_CH6, TOUCH6, RTC_GPIO16, MTMS, HSPICLK, HS2_CLK,
SD_CLK, EMAC_TXD2

012 14 Vo GPIO12, ADC2_CHS5, TOUCHS5, RTC_GPIO15, MTDI, HSPIQ, HS2_DATA2,
SD_DATA2, EMAC_TXD3

GND 15 P Ground

(G5 - VO GPIO13, ADC2_CH4, TOUCH4, RTC_GPIO14, MTCK, HSPID, HS2_DATA3,
SD_DATA3, EMAC_RX_ER

SHD/SD2* 17 I/0 GPIO9, SD_DATA2, SPIHD, HS1_DATA2, UTRXD

SWP/SD3* 18 I/0 GPIO10, SD_DATAS, SPIWP, HS1_DATAS3, U1TXD

SCS/CMD* 19 1’0 GPIO11, SD_CMD, SPICS0, HS1_CMD, U1RTS

SCK/CLK* 20 I/0 GPIO6, SD_CLK, SPICLK, HS1_CLK, U1CTS

SDO/SDO* 21 I/0 GPIO7, SD_DATAO, SPIQ, HS1_DATAO, U2RTS

SDI/SD1* 22 [/{e] GPIO8, SD_DATA1, SPID, HS1_DATA1, U2CTS
GPIO15, ADC2_CHS3, TOUCHS3, MTDO, HSPICSO0, RTC_GPIO13, HS2_CMD,

L 2 Ve SD_CMD, EMAC_RXD3
GPIO2, ADC2_CH2, TOUCH2, RTC_GPIO12, HSPIWP, HS2_DATAO,

102 24 I/0
SD_DATAO

100 25 I/0 GPIO0, ADC2_CH1, TOUCH1, RTC_GPIO11, CLK_OUT1, EMAC_TX_CLK

04 o6 Vo GPIO4, ADC2_CHO, TOUCHO, RTC_GPIO10, HSPIHD, HS2_DATA1,
SD_DATA1, EMAC_TX_ER

1016 27 I/0 GPIO16, HS1_DATA4, U2RXD, EMAC_CLK_OUT

1017 28 [/{e] GPIO17, HS1_DATAS5, U2TXD, EMAC_CLK_OUT_180

105 29 I/0 GPIO5, VSPICS0, HS1_DATAB, EMAC_RX_CLK

1018 30 I/0 GPIO18, VSPICLK, HS1_DATA7

1019 31 [/{e] GPIO19, VSPIQ, UOCTS, EMAC_TXDO

NC 32 - -

1021 33 I/0 GPIO21, VSPIHD, EMAC_TX_EN

RXDO 34 I/0 GPIO3, UORXD, CLK_OUT2

TXDO 35 I/0 GPIO1, UOTXD, CLK_OUTS3, EMAC_RXD2

1022 36 I/0 GPI022, VSPIWP, UORTS, EMAC_TXD1

1023 37 I/0 GPIO23, VSPID, HS1_STROBE

GND 38 P Ground

Not Recommended For New Designs (NRND)
Espressif Systems 9 ESP32-WROOM-32 Datasheet v3.4

Submit Documentation Feedback

92

2 Pin Definitions

Notice:

* Pins SCK/CLK, SDO/SDO, SDI/SD1, SHD/SD2, SWP/SD3 and SCS/CMD, namely, GPIO6 to GPIO11 are connected

to the integrated SPI flash integrated on the module and are not recommended for other uses.

2.3 Strapping Pins
ESP32 has five strapping pins, which can be seen in Chapter 6 Schematics:
o MTDI
* GPIOO
e GPIO2
e MTDO
e GPIO5
Software can read the values of these five bits from register “GPIO_STRAPPING”.

During the chip’s system reset release (power-on-reset, RTC watchdog reset and brownout reset), the latches of
the strapping pins sample the voltage level as strapping bits of “0” or “1”, and hold these bits until the chip is
powered down or shut down. The strapping bits configure the device’s boot mode, the operating voltage of
VDD_SDIO and other initial system settings.

Each strapping pin is connected to its internal pull-up/pull-down during the chip reset. Consequently, if a
strapping pin is unconnected or the connected external circuit is high-impedance, the internal weak
pull-up/pull-down will determine the default input level of the strapping pins.

To change the strapping bit values, users can apply the external pull-down/pull-up resistances, or use the host
MCU’s GPIOs to control the voltage level of these pins when powering on ESP32.

After reset release, the strapping pins work as normal-function pins.

Refer to Table 3 for a detailed boot-mode configuration by strapping pins.

Table 3: Strapping Pins

Voltage of Internal LDO (VDD_SDIO)
Pin Default 3.8V 1.8V
MTDI | Pull-down 0 1

Booting Mode
Pin Default SPI Boot Download Boot
GPIOO | Pull-up 1 0
GPIO2 | Pull-down Don’t-care 0
Enabling/Disabling Debugging Log Print over UOTXD During Booting
Pin Default UOTXD Active UOTXD Silent
MTDO Pull-up 1 0
Timing of SDIO Slave

FE Sampling | FE Sampling | RE Sampling | RE Sampling
Pin Default FE Output RE Output FE Output RE Output
MTDO Pull-up 0 0 1 1
GPIO5 Pull-up 0 1 0 1

. Not Recommended For New Designs (NRND)
Espressif Systems 10 ESP32-WROOM-32 Datasheet v3.4

Submit Documentation Feedback

93

2 Pin Definitions

Note:

¢ Firmware can configure register bits to change the settings of "Voltage of Internal LDO (VDD_SDIO)” and "Timing
of SDIO Slave” after booting.

¢ The module integrates a 3.3 V SPI flash, so the pin MTDI cannot be set to 1 when the module is powered up.

The illustration below shows the setup and hold times for the strapping pins before and after the CHIP_PU signal
goes high. Details about the parameters are listed in Table 4.

Strapping pin

%) t
[z | >

1
]
1
1
1
1
|
|
!

VILJF(ST —————

CHIP_PU

|
|
|
1
|
|
|
|
|
R e S e
1
1
|
1
'
|
|
1
!

Figure 2: Setup and Hold Times for the Strapping Pins

Table 4: Parameter Descriptions of Setup and Hold Times for the Strapping Pins
Parameters Description Min. Unit
to Setup time before CHIP_PU goes from low to high 0 ms
ty Hold time after CHIP_PU goes high 1 ms
Not Recommended For New Designs (NRND)
Espressif Systems 11 ESP32-WROOM-32 Datasheet v3.4

Submit Documentation Feedback

94

3 Functional Description

3 Functional Description

This chapter describes the modules and functions integrated in ESP32-WROOM-32.

3.1 CPU and Internal Memory

ESP32-DOWDQ6 contains two low-power Xtensa® 32-bit LX6 microprocessors. The internal memory
includes:

e 448 KB of ROM for booting and core functions.
e 520 KB of on-chip SRAM for data and instructions.

e 8 KB of SRAM in RTC, which is called RTC FAST Memory and can be used for data storage; it is accessed
by the main CPU during RTC Boot from the Deep-sleep mode.

8 KB of SRAM in RTC, which is called RTC SLOW Memory and can be accessed by the co-processor
during the Deep-sleep mode.

¢ 1 Kbit of eFuse: 256 bits are used for the system (MAC address and chip configuration) and the remaining
768 bits are reserved for customer applications, including flash-encryption and chip-ID.

3.2 External Flash and SRAM

ESP32 supports multiple external QSPI flash and SRAM chips. More details can be found in Chapter SPI in the
ESP32 Technical Reference Manual. ESP32 also supports hardware encryption/decryption based on AES to
protect developers’ programs and data in flash.

ESP32 can access the external QSPI flash and SRAM through high-speed caches.

¢ The external flash can be mapped into CPU instruction memory space and read-only memory space
simultaneously.

- When external flash is mapped into CPU instruction memory space, up to 11 MB + 248 KB can be
mapped at a time. Note that if more than 3 MB + 248 KB are mapped, cache performance will be
reduced due to speculative reads by the CPU.

— When external flash is mapped into read-only data memory space, up to 4 MB can be mapped at a
time. 8-bit, 16-bit and 32-bit reads are supported.

e External SRAM can be mapped into CPU data memory space. Up to 4 MB can be mapped at a time.
8-bit, 16-bit and 32-bit reads and writes are supported.

ESP32-WROOM-32 integrates a 4 MB SPI flash, which is connected to GPIO6, GPIO7, GPIO8, GPIO9, GPIO10
and GPIO11. These six pins cannot be used as regular GPIOs.

3.3 Crystal Oscillators

The module uses a 40-MHz crystal oscillator.

Not Recommended For New Designs (NRND)

Espressif Systems 12 ESP32-WROOM-32 Datasheet v3.4
Submit Documentation Feedback

95

3 Functional Description

3.4 RTC and Low-Power Management

With the use of advanced power-management technologies, ESP32 can switch between different power
modes.

For details on ESP32’s power consumption in different power modes, please refer to section "RTC and
Low-Power Management” in ESP32 Datasheet.

Not Recommended For New Designs (NRND)

Espressif Systems 13 ESP32-WROOM-32 Datasheet v3.4
Submit Documentation Feedback

96

4 Peripherals and Sensors

4 Peripherals and Sensors

Please refer to Section Peripherals and Sensors in ESP32 Datasheet.

Note:
External connections can be made to any GPIO except for GPIOs in the range 6-11. These six GPIOs are connected to
the module’s integrated SPI flash. For details, please see Section 6 Schematics.

Not Recommended For New Designs (NRND)

Espressif Systems 14 ESP32-WROOM-32 Datasheet v3.4
Submit Documentation Feedback

97

5 Electrical Characteristics

5 Electrical Characteristics

5.1

Absolute Maximum Ratings

Stresses beyond the absolute maximum ratings listed in Table 5 below may cause permanent damage to the
device. These are stress ratings only, and do not refer to the functional operation of the device that should follow

the recommended operating conditions.

Table 5: Absolute Maximum Ratings

Symbol Parameter Min Max Unit
VDD33 Power supply voltage -0.3 3.6 V
loutput® Cumulative 10 output current - 1,100 mA
Tstore Storage temperature -40 105 °C

1. The module worked properly after a 24-hour test in ambient temperature at 25 °C, and the IOs in three domains
(VDD3P3_RTC, VDD3P3_CPU, VDD_SDIO) output high logic level to ground. Please note that pins occupied by flash

and/or PSRAM in the VDD_SDIO power domain were excluded from the test.
2. Please see Appendix |O_MUX of ESP32 Datasheet for IO’s power domain.

5.2 Recommended Operating Conditions

Table 6: Recommended Operating Conditions

Symbol Parameter Min Typical Max Unit
VDD33 Power supply voltage 3.0 3.3 3.6 \Y
lvpp Current delivered by external power supply 0.5 - - A
T Operating ambient temperature -40 - 85 °C
5.3 DC Characteristics (3.3 V, 25 °C)
Table 7: DC Characteristics (3.3 V, 25 °C)

Symbol Parameter Min Typ | Max Unit
Cin Pin capacitance . 2 . pF
Vig High-level input voltage 0.75xVDD!| - VDD'+0.3 | V
ViL Low-level input voltage -0.3 - 0.25xVDD!| V
Irg High-level input current - - 50 nA
Ilrr Low-level input current - - 50 nA
Vou High-level output voltage 0.8xVDD! | - - V
Vor Low-level output voltage - - 0.1xVDD! | V

High-level source current VDD3P3_CPU power domain !+ 2 | - 40 | - mA

(VDD! =3.3V,Vpoy >=2.64V, | VDD3P3_RTC power domain *» 2 | - 40 | - mA
lon .

output drive strength set to the .

i VDD_SDIO power domain 1+ 3 - 20 | - mA
maximum)
Not Recommended For New Designs (NRND)
Espressif Systems 15 ESP32-WROOM-32 Datasheet v3.4

Submit Documentation Feedback

5 Electrical Characteristics

Symbol Parameter Min Typ | Max Unit
Low-level sink current

lor (VDD!' =3.3V, Vor, = 0.495V, = 28 | - mA
output drive strength set to the maximum)

Rpu Resistance of internal pull-up resistor - 45 | - kQ

Rpp Resistance of internal pull-down resistor - 45 | - kQ

Vir nrsT | Low-level input voltage of CHIP_PU to shut down the chip - = 0.6 Vv

Notes:

1. Please see Appendix I0_MUX of ESP32 Datasheet for 10’s power domain. VDD is the I/O voltage for a particular power
domain of pins.

2. For VDD3P3_CPU and VDD3P3_RTC power domain, per-pin current sourced in the same domain is gradually reduced
from around 40 mA to around 29 mA, Vo r>=2.64V, as the number of current-source pins increases.

3. Pins occupied by flash and/or PSRAM in the VDD_SDIO power domain were excluded from the test.

5.4 Wi-Fi Radio

Table 8: Wi-Fi Radio Characteristics

Parameter Condition Min Typical Max Unit
Center frequency range of oper- | - 2412 = 2484 MHz
ating channel ™ote!
Output impedance "ot¢2 - - note 2 - Q
TX power mote3 11n, MCS7 12 13 14 dBm
11b mode 17.5 18.5 20 dBm
Sensitivity 11b, 1 Mbps - -98 - dBm
11b, 11 Mbps - -89 - dBm
119, 6 Mbps - -92 - dBm
11g, 54 Mbps - -74 - dBm
11n, HT20, MCSO - -91 - dBm
11n, HT20, MCS7 - 71 - dBm
11n, HT40, MCSO - -89 - dBm
11n, HT40, MCS7 - -69 - dBm
Adjacent channel rejection 11g, 6 Mbps - 31 - dB
11g, 54 Mbps - 14 - dB
11n, HT20, MCSO - 31 - dB
11n, HT20, MCS7 - 13 - dB

1. Device should operate in the center frequency range of operating channel allocated by regional regulatory authorities.
Target center frequency range of operating channel is configurable by software.

2. For the modules that use external antennas, the output impedance is 50 2. For other modules without external
antennas, users do not need to concern about the output impedance.

3. Target TX power is configurable based on device or certification requirements.

Not Recommended For New Designs (NRND)

Espressif Systems 16 ESP32-WROOM-32 Datasheet v3.4
Submit Documentation Feedback

99

5 Electrical Characteristics

5.5 Bluetooth LE Radio

Submit Documentation Feedback

5.5.1 Receiver
Table 9: Receiver Characteristics — Bluetooth LE
Parameter Conditions Min Typ Max Unit
Sensitivity @30.8% PER - - -97 - dBm
Maximum received signal @30.8% PER - 0 - - dBm
Co-channel C/I - - +10 - daB
F=FO0+1MHz - -5 - dB
F=F0-1MHz - -5 - aB
Adjacent channel selectivity C/I F=FOya e - 28 - &
F=F0-2MHz - -35 - B
F=FO0+ 3 MHz - —25 - daB
F=F0-3MHz - -45 - fo[=}
30 MHz ~ 2000 MHz -10 - - dBm
Out-of-band blocking performance BISRNIRAR-SrERI G | 2 - - et
2500 MHz ~ 3000 MHz | -27 - - dBm
3000 MHz ~ 12,5 GHz | -10 - - dBm
Intermodulation - -36 - - dBm
5.5.2 Transmitter
Table 10: Transmitter Characteristics — Bluetooth LE
Parameter Conditions Min Typ Max Unit
RF transmit power - - 0 - dBm
Gain control step - - 3 - dBm
RF power control range - -12 - +9 dBm
F=F0 +2MHz - -52 - dBm
Adjacent channel transmit power F=F0+3MHz - -58 - dBm
F=F0+>3MHz - -60 - dBm
A flayg - - - 265 kHz
AR D - 247 - - kHz
A f2ag/A flayg - - -0.92 - -
ICFT - - -10 - kHz
Drift rate - - 0.7 - kHz/50 ps
Dirift - - 2 - kHz
Not Recommended For New Designs (NRND)
Espressif Systems 17 ESP32-WROOM-32 Datasheet v3.4

100

SWwe)sAg Jisseldsy

I

$0BCPes4 UOIeIUsWNo0g Jugng
8

€A 198USeIeQ Z2E-NOOUM-2edS3

{ONYN) suBiseq MeN 104 PBpUBLLILIOOSY JON

o

Schematics

21 and

a oy

Pin.1
€2 vary with aNp
cystal.

Pin
s [N

Pin.3
cHIP pu/EN

g it

Pin.4
SENSOR_VP

oo

2

s

4

-

A
N NGO
WL TeT]

iy e

s

L=l %]:.‘:E' rL!‘_'S-_{‘"W

3
=
S
W &
oo oo on e
=
=%

The values of C14, L4 and €15
vary with the actual
salection of a PR board.

[SENSOR VP

Pin.5
seNgoR_vn
et

Pin.6
1034

Pin.7
1035

Pin.8
1032

Pin.9
1033

Pin.10
1025

Pin.11
1026

Pin.12
1027

Pin.13
1014

Pin.14
1012

Pin.15

[

Pin.16
1013

Pin.17
sp2
Pin.18
503
Pin.19
oo
Pin.20
cix
Pin 21
500
Pin.22
sp:
Pin.23

1018

Pin.2¢
102

Pin.39

[S

Pin.38
5
==

Ppin.37
1023

Pin.36
1022

Bin 35
TX00
Ppin. 3¢
RXDO

pin 33
1021

Pin.32
NC

Pin.31
1018

pin_30
1018

Pin.29
105

pin.28
1017
3 GPIO1T

pin 27
1016

Pin.26
104

pin.25

Figure 3: ESP32-WROOM-32 Schematics

101

sonewsyos 9

102

7 Peripheral Schematics

7 Peripheral Schematics

VDD33VDD33
)
C1| [10uF
c2] |0.1uF [I-enD
GND UART DOWNLOAD
R1 GND u1 =
8D = 39 1
g/= FehD ﬁ_
GND1 GND3 |57 s oo+
GND.||-C3||T8D_JeN a9 1023 I"3¢ 1022
SENSOR VP RSO 1022 =35 TXD)
SENSOR_VN ENSORTVE 1200 34 RXD
ol SENSOR_VN RXDO |33 T
‘o8 1034 1021 =55
1032 1055 NG 751 019
o 1032 1019 55 o18
s 1033 1018 |5 5
1026 1025 105 738 017
1027 1020 lolr. =77 016
1027 1016 {5 &
= 1014 104 |52 o
% 1012 100 {[Ee
o
OPnwnlBxoc? —|
Cand L
5255503300 >
SINR[RI BOOT OPTION
Y2 GND,
R R__MTMS| —
MTMS AR = |nfelolelol=! |
MTDI S LT 21313181213 |2
MTCK [RAATOR MK
MTDO ARA
JTAG
MTDI should be kept at a low electric level when powering up the module.

Figure 4: ESP32-WROOM-32 Peripheral Schematics

Note:

¢ Soldering Pad 39 to the Ground of the base board is not necessary for a satisfactory thermal performance. If users
do want to solder it, they need to ensure that the correct quantity of soldering paste is applied.

¢ To ensure the power supply to the ESP32 chip during power-up, it is advised to add an RC delay circuit at the EN pin.
The recommended setting for the RC delay circuit is usually R = 10 k2 and C = 1 uF. However, specific parameters
should be adjusted based on the power-up timing of the module and the power-up and reset sequence timing

of the chip. For ESP32’s power-up and reset sequence timing diagram, please refer to Section Power Scheme in
ESP32 Datasheet.

Not Recommended For New Designs (NRND)
ESP32-WROOM-32 Datasheet v3.4

Espressif Systems 19
Submit Documentation Feedback

103

8 Physical Dimensions

8 Physical Dimensions

Unit: mm

[d[O)]

w 3.10£0.15 M
3 3
(=}
045 | © 0.80 0.85 0
o r
g i g
3| S H
[TeRRYe) H
N ‘D =
Q[§ 2
H D,
| o
=
0.85
18.00+0.15
Top View Side View Bottom View

Figure 5: Physical Dimensions of ESP32-WROOM-32

Note:
For information about tape, reel, and product marking, please refer to Espressif Module Package Information.

Not Recommended For New Designs (NRND)

Espressif Systems 20 ESP32-WROOM-32 Datasheet v3.4
Submit Documentation Feedback

9 Recommended PCB Land Pattern

9 Recommended PCB Land Pattern

This section provides the following resources for your reference:

e Figures for recommended PCB land patterns with all the dimensions needed for PCB design. See Figure 6
Recommended PCB Land Pattem.

e Source files of recommended PCB land patterns to measure dimensions not covered in Figure 6. You can
view the source files for ESP32-WROOM-32 with Autodesk Viewer.

Unit: mm
(O Via for thermal pad
Copper

18.00
S
Antenna Area s
38x1.50 [H
ZE 410 350 —
1.05
)
2 S l 0.475 7
10 = Do
N o) A S e = A —
o @“ 0
~) Ys H ©
N 7 8.32 7 -~
ol| © wi P Lo lo o
o] wa i SN b
—
421415 e s E 24 2502

oS
N
~

0.50 —»~|7' 0.50
11.43 3.28

Figure 6: Recommended PCB Land Pattern

Not Recommended For New Designs (NRND)

Espressif Systems 21 ESP32-WROOM-32 Datasheet v3.4
Submit Documentation Feedback

104

10 Product Handling

10 Product Handling

10.1 Storage Conditions

The products sealed in moisture barrier bags (MBB) should be stored in a non-condensing atmospheric
environment of < 40 °C and 90%RH. The module is rated at the moisture sensitivity level (MSL) of 3.

After unpacking, the module must be soldered within 168 hours with the factory conditions 25 + 5 °C and 60
%RH. If the above conditions are not met, the module needs to be baked.

10.2 Electrostatic Discharge (ESD)

¢ Human body model (HBM): +2000 V
e Charged-device model (CDM): +500 V

10.3 Reflow Profile

Solder the module in a single reflow.

o
o
=3
®
[
Q
g 1 1 1 1 I
= 1 1 1 1 1
: : : : Peak Temp. :
! ! ! ! 235 ~ 250 °C !
250 1 3 1 I =5 1
! Preheatingjzone ! ! Reflowzone \| Cooling zone
217 } 150~200°C |60~120s ! " 5217°C 60~90s I\ -1~-5°C/s
200 : : — : ;
! " ! ! Soldering time !
1 1 I 1 1
P e : | e
1 1 I 1 1
1 1 I 1 1
Ramp-up zone : : : : :
1~3°C/s 1 1 1 1
1 1 1 1 1
100 —— ' | i i i
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
| 1 1 1 1
50 ——] | 1 1 1
1 1 1 1 1
1 1 1 1 1
] 1 1 1 1
e : ! : ! | Time (sec)
0
0 50 100 150 200 250
Ramp-up zone — Temp.: 25 ~ 150 °C Time: 60 ~ 90 s Ramp-up rate: 1 ~ 3 °C/s
Preheating zone — Temp.: 150 ~ 200 °C Time: 60 ~ 120 s
Reflow zone — Temp.: >217 °C Time: 60 ~ 90 s; Peak Temp.: 235 ~ 250 °C Time: 30 ~ 70 s
Cooling zone — Peak Temp. ~ 180 °C Ramp-down rate: -1 ~ -5 °C/s
Solder — Sn-Ag-Cu (SAC305) lead-free solder alloy

Figure 7: Reflow Profile

Espressif Systems

22

Not Recommended For New Designs (NRND)

ESP32-WROOM-32 Datasheet v3.4

Submit Documentation Feedback

105

106

10 Product Handling

10.4 Ultrasonic Vibration

Avoid exposing Espressif modules to vibration from ultrasonic equipment, such as ultrasonic welders or
ultrasonic cleaners. This vibration may induce resonance in the in-module crystal and lead to its malfunction or
even failure. As a consequence, the module may stop working or its performance may deteriorate.

Not Recommended For New Designs (NRND)
Espressif Systems 23 ESP32-WROOM-32 Datasheet v3.4
Submit Documentation Feedback

107

11 Related Documentation and Resources

11 Related Documentation and Resources

Related Documentation

e ESP32 Series Datasheet — Specifications of the ESP32 hardware.

ESP32 Technical Reference Manual — Detailed information on how to use the ESP32 memory and peripherals.
ESP32 Hardware Design Guidelines — Guidelines on how to integrate the ESP32 into your hardware product.
ESP32 ECO and Workarounds for Bugs — Correction of ESP32 design errors.

Certificates

https://espressif.com/en/support/documents/certificates
ESP32 Product/Process Change Notifications (PCN)
https://espressif.com/en/support/documents/pcns

® £SP32 Advisories — Information on security, bugs, compatibility, component reliability.
https://espressif.com/en/support/documents/advisories

® Documentation Updates and Update Notification Subscription
https://espressif.com/en/support/download/documents

Developer Zone

e ESP-IDF Programming Guide for ESP32 — Extensive documentation for the ESP-IDF development framework.
e £SP-IDF and other development frameworks on GitHub.
https://github.com/espressif
® £SP32 BBS Forum — Engineer-to-Engineer (E2E) Community for Espressif products where you can post questions,

share knowledge, explore ideas, and help solve problems with fellow engineers.
https://esp32.com/

e The ESP Journal — Best Practices, Articles, and Notes from Espressif folks.
https://blog.espressif.com/

e See the tabs SDKs and Demos, Apps, Tools, AT Firmware.

https://espressif.com/en/support/download/sdks-demos

Products

o £SP32 Series SoCs — Browse through all ESP32 SoCs.
https://espressif.com/en/products/socs?id=ESP32

o £SP32 Series Modules — Browse through all ESP32-based modules.
https://espressif.com/en/products/modules?id=ESP32

o £SP32 Series DevKits — Browse through all ESP32-based devkits.
https://espressif.com/en/products/devkits ?id=ESP32

e £SP Product Selector — Find an Espressif hardware product suitable for your needs by comparing or applying filters.
https://products.espressif.com/#/product-selector?language=en

Contact Us

e See the tabs Sales Questions, Technical Enquiries, Circuit Schematic & PCB Design Review, Get Samples
(Online stores), Become Our Supplier, Comments & Suggestions.
https://espressif.com/en/contact-us/sales-questions

Not Recommended For New Designs (NRND)
Espressif Systems 24 ESP32-WROOM-32 Datasheet v3.4
Submit Documentation Feedback

Revision History

Revision History

Date Version | Release notes
Major updates:
e Removed contents about hall sensor according to PCN20221202
e Added Section 10: Product Handling
2023-02-13 | v3.4 Other updates:
¢ Added strapping pin timing in Section 2.3: Strapping Pins
¢ Added source files of PCB land patterns and 3D models of the modules (if available)
in Section 6: Recommended PCB Land Pattern
Added a link to RF certificates in Table 1
Updated Table 5
2022.03 v3.3)
Added a note below Figure 5
Added Section 11: Related Documentation and Resources
Replaced Espressif Product Ordering Information with ESP Product Selector
2021.08 v3.2 Updated the description of TWAI in Table 1
Labeled this document as (Not Recommended For New Designs)
Modified the note below Figure: Reflow Profile.
Updated the trade mark from TWAI™ to TWAI®
Deleted Reset Circuit and Discharge Circuit for VDD33 Rail in Section 7: Peripheral
2021.02 V3.1 ‘
Schematics
Updated Figure 5: Physical Dimensions of ESP32-WROOM-32 and Figure 6: Recommended
PCB Land Pattem
Added TWAI™ in Table 1;
Added a note under Figure: Reflow Profile;
2020.11 V3.0) o
Updated the C value in RC circuit from 0.1 uF to 1 pF;
Provided feedback link.
e Changed the supply voltage range from 2.7V~ 3.6 Vto 3.0V~ 3.6V,
e Added Moisture sensitivity level (MSL) 3 in Table 1 ESP32-WROOM-32 Specifications;
¢ Added notes about "Operating frequency range” and "TX power” under Table 8 Wi-Fi
2019.09 V2.9 Radiio Characteristics;
e Updated Section 7 Peripheral Schematics and added a note about RC delay circuit
under it;
e Updated Figure 6 Recommended PCB Land Pattern.
2019.01 V2.8 Changed the RF power control range in Table 10 from =12 ~ +12 to =12 ~ +9 dBm.
501840 Vo.7 Added "Cumulative 10 output current” entry to Table 5: Absolute Maximum Ratings;
Added more parameters to Table 7: DC Characteristics.
e Added reliability test items the module has passed in Table 1: ESP32-WROOM-32
Specifications, and removed software-specific information;
e Updated section 3.4: RTC and Low-Power Management;
2018.08 V2.6 e Changed the module’s dimensions from (18+0.2) mm x (25.5 +0.2) mm x (3.1+0.15)
mm to (18.00+0.10) mm x (25.50+0.10) mm x (3.10+0.10) mm;
e Updated Figure 8: Physical Dimensions;
e Updated Table 8: Wi-Fi Radio.
Not Recommended For New Designs (NRND)
Espressif Systems 25 ESP32-WROOM-32 Datasheet v3.4

Submit Documentation Feedback

108

Revision History

Date

Version

Release notes

2018.06

V2.5

e Changed the module name to ESP32-WROOM-32;
e Deleted Temperature Sensor in Table 1: ESP32-WROOM-32 Specifications;
e Updated Chapter 3: Functional Description;
e Added Chapter 6: Recommended PCB Land Pattern;
Changes to electrical characteristics:
e Updated Table 5: Absolute Maximum Ratings;
¢ Added Table 6: Recommended Operating Conditions;
¢ Added Table 7: DC Characteristics;
e Updated the values of "Gain control step”, "Adjacent channel transmit power” in Table
10: Transmitter Characteristics - BLE.

2018.08

V2.4

Updated Table 1 in Chapter 1.

2018.01

V2.3

Deleted information on LNA pre-ampilifier;
Updated section 3.4 RTC and Low-Power Management;
Added reset circuit in Chapter 7 and a note to it.

2017.10

V2.2

Updated the description of the chip’s system reset in Section 2.3 Strapping Pins;

Deleted "Association sleep pattern” in Table “Power Consumption by Power Modes” and
added notes to Active sleep and Modem-sleep;

Updated the note to Figure 4 Peripheral Schematics;

Added discharge circuit for VDD383 rail in Chapter 7 and a note to it.

2017.09

V2.1

Updated operating voltage/power supply range updated to 2.7 ~ 3.6V,
Updated Chapter 7.

2017.08

V2.0

Changed the sensitivity of NZIF receiver to -97 dBm in Table 1;

Updated the dimensions of the module;

Updated Table “Power Consumption by Power Modes” Power Consumption by Power
Modes, and added two notes to it;

Updated Table 5, 8, 9, 10;

Added Chapter 8;

Added the link to certification download.

2017.06

V1.9

Added a note to Section 2.1 Pin Layout;
Updated Section 3.3 Crystal Oscillators;
Updated Figure 3 ESP-WROOM-32 Schematics;
Added Documentation Change Notification.

2017.05

V1.8

Updated Figure 1 Top and Side View of ESP32-WROOM-32 (ESP-WROOM-32).

2017.04

V1.7

Added the module’s dimensional tolerance;
Changed the input impedance value of 5092 in Table 8 Wi-Fi Radio Characteristics to output
impedance value of 30+j10 Q.

2017.04

V1.6

Added Figure: Reflow Profile.

2017.03

V1.6

Updated Section 2.2 Pin Description;
Updated Section 3.2 External Flash and SRAM;
Updated Section 4 Peripherals and Sensors Description.

2017.038

V1.4

Espressif Systems

Updated Chapter 1 Preface;

Updated Chapter 2 Pin Definitions;

Updated Chapter 3 Functional Description;

Updated Table Recommended Operating Conditions;

Not Recommended For New Designs (NRND)
26 ESP32-WROOM-32 Datasheet v3.4
Submit Documentation Feedback

109

Revision History

Date Version | Release notes
Updated Table 8 Wi-Fi Radio Characteristics;
Updated Section: Reflow Profile;
Added Chapter Learning Resources.
2016.12 V1.3 Updated Section 2.1 Pin Layout.
2016.11 V1.2 Added Figure 7 Peripheral Schematics.
2016.11 V11 Updated Chapter 6 Schematics.
2016.08 V1.0 First release.
Not Recommended For New Designs (NRND)
Espressif Systems 27 ESP32-WROOM-32 Datasheet v3.4

Submit Documentation Feedback

110

www.espressif.com

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without notice.

ALL THIRD PARTY’S INFORMATION IN THIS DOCUMENT IS PROVIDED AS IS WITH NO
WARRANTIES TO ITS AUTHENTICITY AND ACCURACY.

NO WARRANTY IS PROVIDED TO THIS DOCUMENT FOR ITS MERCHANTABILITY, NON-
INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, NOR DOES ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All'liability, including liability for infringement of any proprietary rights, relating to use of information
in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any
intellectual property rights are granted herein.

The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a
registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property
of their respective owners, and are hereby acknowledged.

Copyright © 2023 Espressif Systems (Shanghai) Co., Ltd. All rights reserved.

Not Recommended For New Designs (NRND)

111

112

Appendix F: E-Ink Display Datasheet
SPECIFICATION

Product Type : EPD Model Number: H3DSHU
Description . Screen Size: 4.2"
Color: Black and White

Display Resolution: 400*300

'DWH : 2017.03.01

LUAVESHARE

//o
share awesome hardware

:aYHVKDU(OHFWURQLFV

10F, International Science & Technology Building, Fuhong Rd,
Futian District, Shenzhen, China Website: www.ZDYHVKDUH.com

Revision History

Rev. Issued Date Revised Contents

1.0 May.05.2015 | Preliminary

1. In part note 9-2: Modify each update interval time should be minimum at 150
1.1. Jul.27.2015
seconds to 180 seconds.

113

In part 8: Modify typical operating sequence.
1.2 Aug.21.2015
In part 12: Delete block diagram.
1.3 Nov.03.2015 | 1. In part 6: Delete command 70h.
1.4 Nov.11.2015 | 1. In part 4: Modify the mechanical drawing of EPD module.
2.0 Mar.01.2017 | 1. In part 7-5): Modify Reference Circuit.
2,/45

TECHNICAL SPECIFICATION

CONTENTS
NO. ITEM PAGE
- Cover 1
- Revision History 2
- Contents 3
1 Application 4
2 Features 4
3 Mechanical Specifications 4
4 Mechanical Drawing of EPD module 5
5 Input/Output Terminals 6

114

6 Command Table 8

7 Electrical Characteristics 27
8 Typical Operating Sequence 35
9 Optical Characteristics 39
10 Handling, Safety and Environment Requirements 41
11 Reliability test 42
12 Point and line standard 44
13 Packing 45

1. Over View

The display is a TFT active matrix electrophoretic display, with interface and a reference system

design. The 4.2” active area contains 400x300 pixels, and has 1-bit white/black full display
capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control
logic, oscillator, DC-DC, SRAM, LUT, VCOM, and border are supplied with each panel.

2. Features
High contrast

High reflectance

Ultra wide viewing angle

Ultra low power consumption

Pure reflective mode

Bi-stable

Commercial temperature range

Landscape, portrait mode

Antiglare hard-coated front-surface

Low current deep sleep mode

On chip display RAM

Waveform stored in On-chip OTP

Serial peripheral interface available

On-chip oscillator

115

On-chip booster and regulator control for generating VCOM, Gate and source driving voltage

I2C Signal Master Interface to read external temperature sensor

Available in COG package IC thickness 300um

3. Mechanical Specifications
Parameter Specifications Unit Remark
Screen Size 4.2 Inch
Display Resolution | 400(H)*300(V) Pixel Dpi: 120
Active Area 84.8(H)x63.6 (V) mm
Pixel Pitch 0.212x0.212 mm
Pixel Square
Configuration
Outline Dimension | 91.0(H)x77.0(V) x1.18(D) mm
Weight 13.76+0.5 g

116

4,45

4. Mechanical Drawing of EPD module

117

HE RELS
waanw anord | SONTMVIQ [ALTTVAD | SOINHOALf ONILIANY [N9TSHA
Jaded—e 7§ woory | Tor | ave ava W | s s v019 1/ 4035
N gos | ww | 1IN0 - - ¥ 10430
SOTUOI}09[f aIeysare) (S 7
ey T EET N Y -
00L/L 31035
azIs 1ax1g (Buimoup uoias) o _ .
SSAURIY (d3 a3 500+050
[:
S 0l1d0 €
I D0EX00 T U01NoS3Y 7
— 27 E GL0F S8IUDJ3|0J pajaqoju | R
K =
yang &4 apig JU0J 4 £
i z =
T ar e é\'y
IO L AET]
T IO L
[] 3] i _I..Clﬁr Ul
d,wi
a
SRR
o -BEEE
Tileaf— =122l =
— g - T - 7° 32l =
FET |
00 1 |
T VV 07818 : o
T AT 07898 -l
60 SITOTT6R

add ToF16

W) LHAVESHARE

share awesome hardware

A 2" a_Danar

5. Input/Output Terminals

5-1) Pin out List

Pin# | Type | Single Description Remark
No connection and do not connect with other
1 NC) Keep Open
NC pins
2 @) GDR N-Channel MOSFET Gate Drive Control
3 @) RESE Current Sense Input for the Control Loop
4 C VGL Negative Gate driving voltage
5 C VGH Positive Gate driving voltage
I2C Interface to digital temperature sensor
6 o) TSCL)
Clock pin
I2C Interface to digital temperature sensor Date
7 /O | TSDA)
pin
8 I BS1 Bus selection pin Note 5-5
9 @) BUSY Busy state output pin Note 5-4
10 I RES # Reset Note 5-3
11 I D/IC # Data /Command control pin Note 5-2
12 I CS# Chip Select input pin Note 5-1
13 /0 | DO serial clock pin (SPI)
14 /O | D1 serial data pin (SPI)
15 I VDDIO | Power for interface logic pins

W) LHAVESHARE

share awesome hardware A 2" a_Danar

16 I VCI Power Supply pin for the chip

17 VSS Ground

18 C VDD Core logic power pin

19 C VPP Power Supply for OTP Programming
20 C VSH Positive Source driving voltage

21 C PREVGH | Power Supply pin for VGH and VSH

22 C VSL Negative Source driving voltage

23 C PREVGL | Power Supply pin for VCOM, VGL and VSL

24 C VCOM VCOM driving voltage

Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for

MCU communication only when CS# is pulled Low.

Note 5-2: This pin (D/C#) is Data/Command control pin connecting to the MCU. When the pin is
pulled HIGH, the data will be

interpreted as data. When the pin is pulled Low, the data will be interpreted as command.
Note 5-3: This pin (RES#) is reset signal input. The Reset is active Low.

Note 5-4: This pin (BUSY) is Busy state output pin. When Busy is low, the operation of chip

should not be interrupted and any

commands should not be issued to the module. The driver IC will put Busy pin low when the

driver IC is working such as:

Outputting display waveform; or

Programming with OTP

Communicating with digital temperature sensor

Note 5-5: This pin (BS1) is for 3-line SPI or 4-line SPI selection. When it is “Low”, 4-line SPI is
selected. When it is “High”, 3-line SP1 (9 bits SPI) is selected. Please refer to below Table.

W) LHAVESHARE

share awesome hardware A 2" a_Danar

Table: Bus interface selection

BS1 MPU Interface

L 4-lines serial peripheral interface (SPI)

H 3-lines serial peripheral interface (SPI) -9
bits SPI

W

WAVESHARRE

share awesome hardware

A 2" a_Danar

6.

Command Table

W/R: 0: Write cycle 1: Read cycle C/D:0: Command 1: Data

D7~D0: -: Don’t care #: Valid

Data
| Command W/R|C/D| D7| D6| D5| D4| D3| D2 | D1| DO| Registers Default
0 0O |0 |0 |0 O |O (O |O |O 00h
Panel Setting
! (PSR) RES[1:0],REG,KW/R,UD,
0 1 #O|\# |# |# |# |# |# | # OFh
SHL,SHD_N,RST_N
0 0O |0 |0 |0 |0 |O (O |O |21 01h
o |1 |- |- |- |- |- |- |# |# |VDS_ENVDG EN 03h
Power Setting 0 1 |- (- |- |- |- |# |# |# |VCOM_HV,VGHL_LV[1:0]| 00h
2
(PWR) 0 |1 |- |- |# |# |# |# |# |# | VDH[5:0] 26h
0 |1 |- |- |# |# |# |# |# |# |VDL[50] 26h
0 1 |- |- |# |# |# |# |# |# |VDHR[5:0] 03h
3 | Power 0 0O |0 |0 |0 |0 |O (O |21 |O 02h
OFF(POF)
Power OFF 0 0O |0 |0 |0 |0 |O (0 |21 |2 03h
4 | Sequence
Setting(PFS) o |1 |- |- |[# |# |- |- |- |- |T_VDS.OF 00h
5 | Power 0 0O |0 |0 |0 (O |O (1 |O |O 04h

ON(PON)

W) LHAVESHARE

share awesome hardware A 2" a_Danar
Power ON
6 0 0 0O (0 [0 |O |O |1 |0 |1 05h
Measure(PMES)
0 0 0O (0 |0 |O |O |1 |1 |O 06h
Booster 0 |1 [# |# |# |# |# |# |# |# |BT_PHA[7:.0] 17h
7 Soft
Start(BTST) 0 1 | # |# |# |# |# |# |# |# |BT_PHB[7:0] 17h
0 1 - |- |# |# |# |# |# |# |BT_PHC[5:.0] 17h
0 0 0O (0 |0 |O |O |1 |1 |1 07h
8 | Deep Sleep
0 1 1 (0 |1 |0 |0 |1 |0 |1 |Checkcode A5h
Display 0 0O |0 [0 |0 |1 |0 [0 |O |O |B/WPixel Data (400x300) | 10h
Start
. 0 1 | # |(# |# |# |# |# |# |# | KPXL[1:8] 00h
Transmission
9 | 1(DTM1,
0 1
white/black
Data) (x-
0 1 | # |# |# |# |# |# |# |# | KPXL[n-1:n] 00h
byte command)
0 0 0O (0[O |21 |O |0 |O |1 11h
10| Data Stop
1 1 |# |- |- |- |- |- |- |- 00h
Display
11 o (0 |0 |0 |O |21 |0 |0 |2 |O 12h
Refresh(DRF)
VCOM

12 LUT(LUTC) 0 0 0 |0 |1 (O O |0 |0]O 20h

W) LHAVESHARE

share awesome hardware

A 2" a_Danar

(45-byte
command,
structure of

bytes

2~T7 repeated)

Command

W/R

C/D

D7

D6

D5

D4

D3

D2

D1

DO

Registers

Default

13

W2W LUT
(LUTWW)

(43-byte command,
structure of
bytes 2~7

repeated 7 times)

21h

14

B2W LUT
(LUTBW

LUTR)

(43-byte command,
structure of
bytes 2~7

repeated 7 times)

22h

15

W2B LUT
(LUTWB

LUTW)

/

o

23h

W) LHAVESHARE

share awesome hardware

A 2" a_Danar

(43-byte command,
structure of
bytes 2~7

repeated 7 times)

B2B LUT
(LUTBB /
LUTB)
16 |(43-byte command, [24h
sturcture of
bytes 2~7
repeated 7 times)
0 30h
PLL
o trol(PLL
contro
(PLL) 0 M[2:0],N[2:0] 3Ch
Sensor|0 40h
Temperature
18 |Calibration 1 LM[10:3)/TSR[7:0] [00h
(TSC)
1 LM[2:0]/- 00h
Temperature Sensor|0 41h
19 |Selection
(TSE) 0 TSE, TO[3:0] 00h
Temperature ~ ScNSOrP 42h
20
Write(TSW) 0 WATTR][7:0] 00h

W

WAVESHARRE

share awesome hardware

A 2" a_Danar

0 1 # # # # ® H # MWMSB[7:0] 00h
0 1 # # # # W H # MWLSB[7:0] 00h
Read0 0 [0 1 [0 0 0 1 2 43h
Temperature
21 [Sensor 1 1 # B # # W # # |RMSB[7:0] 00h
(TSR)
1 1 # B # # # # # |RLSB[7:0] 00h
0O 0 0o 1 0 0 0 0 [0 50h
- \Vcom and data
interval setting(CDI) VBD[1:0],DDX[1:0],
1 # # # #oOoW oM D7h
CDI[3:0]
| Command W/R|C/D|D7|D6| D5| D4| D3| D2 | D1| DO | Registers Default
Lower| O o (0|1 0|21 (0 |0 |0 |2 51h
Power
23 _
Detection 14 | | |- |- |- |- |- |- |# |LrD 01h
(LPD)
TCON 0 O (0|1 110 0 |0 |0 O 60h
24| setting
0 1 |# |# |# |# |# |# |# |# |S2G[3:0],G2S[3:0] 22h
(TCON)
0 O (0|1 110 0 |0 |0 |2 61h
Res-olutlon R 00h
setting HRES[8:3]
25| (TRES) 0 1 |# |# |# |# |# |0 |0 |O 00h

W

WAVESHARE

share awesome hardware

A 2" a_Danar

VRES[8:0]

00h

00h

26

GSST Setting

(GSST)

65h

HST[8:3]

00h

00h

VSTI[8:0]

00h

00h

27

Get
Status

(FLG)

71h

PTL_FLAG,I’C_BUSY,DATA

_FLAG,PON,POF,BUSY

02h

28

Auto

Measurement

Vcom

80h

AMVT[1:0],XON,AMVS,

AMV,AMVE

10h

29

Read

Vcom

Value(VV)

81h

VV[5:0]

00h

30

VCM_DC
Setting

(VDCS)

82h

VDCS[5:0]

00h

UJRVESHRRE
share awesome hardware N 2" a_Panar
0 0 1 /0 |0 |1 |0 |O |O |O 90h
0 1 SR I R I I I A I 4 00h
HRST[8:3]
0 1 # |# |# |# |# |0 |0 |O 00h
0 1 SR I R I I I A I 4 00h
HRED[8:3]
0 1 # |# |# |# |# |1 |1 |1 07h
Partial
0 1 - - - - - - - B 00h
Window
31| (PTL) VRSTI[8:0]
0 1 # O\ # |# |# |# | # | B |# 00h
0 1 - - - - - - - B 00h
VREDI8:0]
0 1 # O\# |# |# |# | # |# |# 00h
0 1 - |- |- |- |- |- |- |# |PT_SCAN 01h
| Command W/R|C/D| D7| D6| D5| D4| D3| D2| D1| DO| Registers Default
Partial
32 In 0 0 1 /0 |0 |1 |0 |O |0 |1 91h
(PTIN)
Partial
33 Out 0 0 1 /0 |0 |1 |0 |O |1 |O 92h

(PTOUT)

W

WAVESHARE

share awesome hardware

A 2" a_Danar

Program 0 AOh
34| Mode (PGM)
0 Check code = A5h A5h
Active
35| Progrmming | O Alh
(APG)
0 A2h
1 Read Dummy N/A
Read
36 OTP |1 Data of Address = 000h N/A
(ROTP)
1 N/A
1 Data of address = n N/A
Power Saving | 0 E3h
37| (Pws)
0 VCOM_W][3:0],SD_WI[3:0]| 00h

W) LHAVESHARE

share awesome hardware A 2" a_Danar

1) Panel Setting (PSR) (Register: ROOH)

Action | W/R| C/D| D7 D6 D5 D4 D3| D2 | D1 DO
Setting | O 0 0 0 0 0 0 0 0 0
the

panel |0 1 RES1| RESO| REG_EN| BWR| UD| SHL| SHD_N| RST_N

RES[1:0]: Display Resolution setting (source x gate)

00b: 400x300 (Default) Active source channels: SO ~ S399. Active gate channels: GO ~ G299.

01b: 320x300 Active source channels: SO ~ S319. Active gate
channels: GO ~ G299.

10b: 320x240 Active source channels: SO ~ S319. Active gate
channels: GO ~ G239.

11b: 200x300 Active source channels: SO ~ S199. Active gate
channels: GO ~ G299.

REG_EN: LUT selection
0: LUT from OTP. (Default) 1: LUT from register. BWR: Black / White / Red
0: Pixel with B/W/Red. (Default) 1: Pixel with B/W.
UD: Gate Scan Direction
0: Scan down. First line to last line: Gn-1 - Gn-2 > Gn-3 - ... - GO
1: Scan up. (default) First line to last line: GO > G1 > G2 - ... > Gn-1
SHL: Source Shift direction
0: Shift left First data to last data: Sn-1 - Sn-2 - Sn-3 > ... - SO

1: Shift right. (default) First data to last data: SO - S1 > S2 - ... > Sn-1 SHD_N: Booster
Switch

0: Booster OFF, register data are kept, and SEG/BG/VVCOM are kept OV or floating.

W) LHAVESHARE

share awesome hardware A 2" a_Danar

1: Booster ON (Default)

When SHD_N become LOW, charge pump will be turned OFF, register and SRAM data will keep
until VDD OFF, and SD output and VCOM will remain previous condition. SHD_N may have two

conditions: Ov or floating.
RST_N: Soft Reset

1: No effect (Default). Booster OFF, Register data are set to their default values, and
SEG/BG/VCOM: OV When RST_N become LOW, the driver will be reset, all registers will be
reset to their default value. All driver functions will be disabled. SD output and VCOM will base

on previous condition. It may have two conditions: Ov or floating.

2) Power Setting (PWR) (RO1H)

Action W/R|C/D | D7 | D6 | D5 | D4 | D3 | D2 D1 DO

0 0 0O |0 |0 |0 |O 0 0 1

o |1 |- |- |- |- |- |- VDS_EN| VDG_EN
Selecting 0 |1 |- |- |- |- |- |VCOM_HV|VGHL_LV[L:0]
Internal/External
Dower o |1 |- |- VDHI[5:0]

o |1 |- |- VDL[5:0]

o |1 |- |- VDHR[5:0]

VDS_EN: Source power selection

0: External source power from VDH/VDL pins

1: Internal DC/DC function for generating VDH/VDL
VDG_EN: Gate power selection

0: External gate power from VGH/VGL pins

1: Internal DC/DC function for generating VGH/VGL

W) LHAVESHARE

share awesome hardware

A 2" a_Danar

VCOM_HV: VCOM Voltage Level
0: VCOMH=VDH+VCOMDC, VCOML=VDL+VCOMDC
1: VCOML=VGH, VCOML=VGL

VGHL_LV[1:0]: VGH/VGL Voltage Level selection.

VGHL_LV | VGHL voltage level

00(Default) | VGH=16V,VGL=-16V

01 VGH=15V,VGL= -15V
10 VGH=14V,VGL= -14V
11 VGH=13V,VGL= -13V

VDH]I5:0]: Internal VDH power selection for B/W pixel.(Default value: 100110b)

VDH VDH_V | VDH VDH_V

000000 | 2.4V

000001 | 2.6V 100110 | 10.0V

000010 | 2.8V 100111 | 10.2V

000011 | 3.0V 101000 | 10.4V

000100 | 3.2V 101001 | 10.6V

000101 | 3.4V 101010 | 10.8V

000110 | 3.6V 101011 | 11.0V

W) LHAVESHARE

share awesome hardware

A 2" a_Danar

Internal VDL power selection for B/W pixel. (Default value: 100110b)

000111 | 3.8V (others) | 11.0V
VDL[5:0]:
VDL | VDLV| VDL | VDLV
000000 | -2.4V
000001 | -2.6V | 100110 | -10.0V
000010 | -2.8V | 100111 | -10.2V
000011 | -3.0V | 101000 | -10.4V
000100 | -3.2V | 101001 | -10.6V
000101 | -3.4V | 101010 | -10.8V
000110 | -3.6V | 101011 | -11.0V
000111 | -3.8V | (others) | -11.0V

VDHR[5:0]: Internal VDHR power selection for Red pixel. (Default value: 000011b)

VDHR | VDHR |VDHR |VDHR
V V

000000 | 2.4V

000001 | 2.6V |100110 | 10.0V

000010 | 2.8V |100111 |10.2V

000011 | 3.0V | 101000 | 10.4V

W) LHAVESHARE

share awesome hardware

A 2" a_Danar

000100 | 3.2V 101001 10.6V

000101 | 3.4V 101010 10.8V

000110 | 3.6V 101011 11.0V

000111 | 3.8V (others) | 11.0V
Power OFF (PWR) (RO2H)
Action W/R | C/D | D7 D6 D5 D4 D3 D2 | D1 | DO
Turning OFF the 0 0 0 0 0 0 0 0 1 0
power

After the Power Off command, the driver will power off following the Power Off Sequence. This

command will turn off charge pump, T-con, source driver, gate driver, VCOM, and temperature

sensor, but register data will be kept until VDD becomes OFF.

Source Driver output and Vcom will remain as previous condition, which may have 2 condition:

OV or floating.

Power off sequence setting (PFS) (RO3H)

Action W/R |C/D| D7 | D6 |D5 D4 D3 |D2 | D1 | DO
. 0 0 0 |0 0 0 0O (0 |1 |1
Setting Power OFF
equence
sequ o |1 |- |- |T.vbsoFFLoll- |- |- |-
T _VDS_OFF[1:0]: Power OFF Sequence of VDH and VDL.
00b: 1frame (Default) 01b: 2 frames 10b: 3frames 11b:4 frame
Power ON (PON) (RO4H)
Action W/R | C/D | D7 | D6 | D5 D4 | D3 (D2 |D1 | DO

W) LHAVESHARE

share awesome hardware

A 2" a_Danar

Turning ON the

Power

After the Power ON command, the driver will be powered ON following the Power ON Sequence.

Refer to the Power ON Sequence section. In the sequence, temperature sensor will be activated for

one time sensing before enabling booster.

Power ON Measure (PMES) (RO5H)

Action W/R |C/D | D7 | D6 | D5 D4 |D3 |D2 |D1 | DO
0 0 0 |0 0 0 0 1 |0 1
This command enables the internal bandgap, which will be cleared by the next POF.
Booster Soft Start (BTST) (RO6H)
W/ | C/
Action D7 D6 D5 D4 D3 D2 D1 DO
R |D
0 |0 |0 0 0 0 0 1 1 0
BT _PHA | BT_PHA | BT_PHA | BT_PHA | BT_PHA | BT_PHA | BT_PHA | BT_P}
0 |1
Starting 7 6 5 4 3 2 1 0
data
transmissio o |4 BT _PHB | BT_PHB | BT_PHB | BT_PHB | BT_PHB | BT_PHB | BT_PHB | BT_P}
n 7 6 5 4 3 2 1 0
BT _PHC | BT_PHC | BT_PHC | BT_PHC | BT_PHC | BT_P}
0o |1 |- -
5 4 3 2 1 0

BTPHA[7:6]: Soft start period of phase A.

W) LHAVESHARE

share awesome hardware A 2" a_Danar

00b: 10mS 01b: 20mS 10b: 30mS 11b:

BTPHA[5:3]: Driving strength of phase 40msS

A
000b: strength 1 001b: strength 2 010b: strength 3 011b: strength 4

100b: strength 5 101b: strength 6 110b: strength 7 111b: strength 8 (strongest)
BTPHA[2:0]: Minimum OFF time setting of GDR in phase B

000b: 0.27uS 001b: 0.34uS 010b: 0.40uS 011b: 0.54uS

100b: 0.80uS 101b: 1.54uS 110b: 3.34uS 111b: 6.58uS
BTPHB[7:6]: Soft start period of phase B.

00b: 10mS 01b:20mS 10b: 30mS 11b: 40mS
BTPHBI[5:3]: Driving strength of phase B

000b: strength 1 001b: strength 2 010b: 011b: strength 4
strength 3

100b: strength 5 101b: strength 6 110b: 111b: strength 8
strength 7 (strongest)

BTPHB[2:0]: Minimum OFF time setting of GDR in phase B
000b: 0.27uS 001b: 0.34uS 010b: 0.40uS 011b: 0.54uS

100b: 0.80uS 101bh: 1.54uS 110b: 3.34uS 111b: 6.58uS
BTPHCI5:3]: Driving strength of phase C

000b: strength 1 001b: strength 2 010b: 011b: strength 4
strength 3

100b: strength 5 101b: strength 6 110b: 111b: strength 8
strength 7 (strongest)

BTPHC[2:0]: Minimum OFF time setting of GDR in phase C

W) LHAVESHARE

share awesome hardware A 2" a_Danar

000b: 0.27uS 001b: 0.34uS 010b: 0.40uS 011b: 0.54uS
100b: 0.80uS 101b: 1.54uS 110b: 3.34uS 111b: 6.58uS

Deep Sleep (DSLP) (RO7H)

Action |W/R|C/D|D7 |D6 D5 |[D4 |D3 |D2 |D1 |DO

Deep

Sleep

After this command is transmitted, the chip would enter the deep-sleep mode to save power.
The deep sleep mode would return to standby by hardware reset.
The only one parameter is a check code, the command would be executed if check code = 0xXA5.

Data Start Transmission 1 (DTM1) (R10H)

Action W/R| C/D| D7 D6 D5 D4 D3 D2 D1 DO

. 0 1 Pixell | Pixel2 | Pixel3 | Pixel4 | Pixel5 | Pixel6 | Pixel7 | Pixel8
Starting

data

transmission

0 1 Pixel(n- | Pixel(n- | Pixel(n-| Pixel(n-| Pixel(n-| Pixel(n-| Pixel(n-| Pixel(n)
7) 6) 5) 4) 3) 2) 1)

This command starts transmitting data and write them into SRAM. To complete data transmission,
command DSP (Data transmission Stop) must be issued. Then the chip will start to send
data/\VVCOM for panel.

In B/W mode, this command writes “OLD” data to SRAM.

In B/W/Red mode, this command writes “B/W” data to SRAM.

W) LHAVESHARE

share awesome hardware A 2" a_Danar

In Program mode, this command writes “OTP” data to SRAM for programming.

Data Stop (DSP) (R11H)

Action W/R| C/D| D7 D6 D5 D4 D3 D2 D1 DO
Stopping 0 0 0 0 0 1 0 0 0 1
data

transmission| 1 |1 | Data_flag| - -]])))

To stop data transmission, this command must be issued to check the data_flag.
Data_flag: Data flag of receiving user data.

0: Driver didn’t receive all the data.

1: Driver has already received all the one-frame data (DTM1 and DTM2).

After “Data Start” (R10h) or “Data Stop” (R11h) commands and when data_flag=1, the refreshing
of panel starts and BUSY signal will become “0”.

Display Refresh (DRF) (R12H)

Action W/R | C/D | D7 D6 D5 D4 D3 D2 D1 DO
Refreshing the 0 0 0 0 0 1 0 0 1 0
display

While user sent this command, driver will refresh display (data/\VVCOM) according to SRAM data
and LUT.

After Display Refresh command, BUSY signal will become “0” and the refreshing of panel starts.
VCOM LUT (LUTC) (R20H)

This command builds Look-up Table for VCOM

W2W LUT (LUTWW) (R21H)

This command builds Look-up Table for White-to-White.

B2W LUT (LUTBW/LUTR) (R22H)

W) LHAVESHARE

share awesome hardware A 2" a_Danar

This command builds Look-up Table for Black-to-White.
W2B LUT (LUTWB/LUTW) (R23H)

This command builds Look-up Table for White - to- Black.
B2B LUT (LUTBB /LUTB) (R24H)

This command builds Look-up Table for Black - to- Black.

PLL Control (PLL) (R30H)

Action W/R | C/D| D7 D6 D5 D4 D3 D2 D1 DO
. 0 0 |0 0 1 1 0 0 0 0
Controlling
PLL
0 1 - - M[2:0] N[2:0]

The command controls the PLL clock frequency. The PLL structure must support the following

frame rates:

M| N | Frame M| N | Frame M| N | Frame M| N | Frame Rate
Rate Rate Rate
1|29Hz 1|86Hz 1150 Hz 1| 200Hz
2|14 Hz 2 |43 Hz 21 72Hz 2 | 100 Hz
3|1 10Hz 3| 29Hz 3|48 Hz 3| 67Hz
1 3 5 7
4| 7Hz 4 | 21 Hz 4|36 Hz 4 |50 Hz
(Default)
5| 6Hz 5117 Hz 5|29 Hz 51|40 Hz
6 | 5Hz 6|14 Hz 6 | 24 Hz 6 | 33Hz

W) LHAVESHARE

share awesome hardware

A 2" a_Danar

7|4Hz 7| 12Hz 71 20Hz 7|29 Hz
1|57Hz 1|114Hz 1|171Hz
2 |29 Hz 2 |57 Hz 2 | 86 Hz
3[19Hz 3(38Hz 3 |57Hz
2 |4 |14Hz 4 |4 |29Hz 6 |4|43Hz
5|11 Hz 5|23 Hz 5(34Hz
6 | 10 Hz 6 |19 Hz 6 | 29 Hz
7 |8Hz 7 |16 Hz 7|24 Hz
Horizontal Hsyne | i)
o L
e L
e wock_____________ i
Vertical g
voe ||y e L]
DE T
i 16 clk i
[——— t
Temperature Sensor Calibration (TSC) (R40H)
Action WI/R| C/D| D7 D6 D5 D4 D3 D2 D1 DO
0 0 0 1 0 0 0 0 0 0
Sensing
1 1 D10/TS7| D9/TS6 | D8/TS5| D7/TS4| D6/TS3| D5/TS2| D4/TS1| D3/TSO
Temperature
1 1 D2 D1 DO - - - - -

W) LHAVESHARE

share awesome hardware

A 2" a_Danar

This command reads the temperature sensed by the temperature sensor.

TS[7:0]: When TSE (R41h) is set to 0, this command reads internal temperature sensor

value.

D[10:0]: When TSE (R41h) is set to 1, this command reads external LM75 temperature

sensor value.
TS[7:0]/D[10:3 | Temperatur | TS[7:0]/D[10:3 | Temperatur | TS[7:0]/D[10:3 | Temperatur
] e (°0)] e (°0)] e (°0)
1110 0111 -25 0000_0000 0 0001_1001 25
1110_1000 -24 0000_0001 1 0001_1010 26
1110 1001 -23 0000_0010 2 0001_1011 27
1110 1010 -22 0000_0011 3 0001_1100 28
1110 1011 -21 0000_0100 4 0001_1101 29
1110_1100 -20 0000_0101 5 0001_1110 30
1110 1101 -19 0000_0110 6 0001_1111 31
1110 1110 -18 0000_0111 7 0010_0000 32
1110 1111 -17 0000_1000 8 0010_0001 33
1111_0000 -16 0000_1001 9 0010_0010 34
1111 0001 -15 0000_1010 10 0010_0011 35
1111 0010 -14 0000_1011 11 0010_0100 36

1111 0011 -13 0000_1100 12 0010_0101 37
1111 0100 -12 0000_1101 13 0010_0110 38
1111 0101 -11 0000_1110 14 0010_0111 39
1111 0110 -10 0000_1111 15 0010_1000 40
1111 0111 -9 0001_0000 16 0010_1001 41
11111000 -8 0001_0001 17 0010_1010 42
1111 1001 -7 0001_0010 18 0010_1011 43
1111 1010 -6 0001_0011 19 0010_1100 44
1111 1011 -5 0001_0100 20 0010_1101 45
1111 1100 -4 0001_0101 21 0010_1110 46
1111 1101 -3 0001_0110 22 0010_1111 47
1111 1110 -2 0001_0111 23 0011_0000 48
1111 1111 -1 0001_1000 24 0011_0001 49
Temperature Sensor Enable (TSE) (R41H)
Action W/R | C/D | D7 D6 D5 D4 D3 D2 D1 | DO
Enable Temperature 0 0 1 0 0 0 0 0 1
Sensor/Offset
0 TSE |- - - TO[3:0]

This command selects Internal or External temperature sensor.

W) LHAVESHARE

share awesome hardware A 2" a_Danar

TSE: Internal temperature sensor switch
0: Enable (Default) 1: Disable; using external sensor.

TO[3:0]: Temperature offset.

TO[3:0] | Calculation | TO[3:0] | Calculation
0000b |0 1000 -8
0001 1 1001 -7
0010 2 1010 -6
0110 6 1110 -2
0111 7 1111 -1

Temperature Sensor Write (TSW) (R42H)

Action W/R |[C/ID |D7 |D6 |D5 |D4 D3 D2 | D1 |DO

Write External 0 1 WATTR][7:0]

Temperature

Sensor 0 1 WMSB[7:0]
0 1 WLSB[7:0]

This command reads the temperature sensed by the temperature sensor. WATTR: D[7:6]: 1°C
Write Byte Number

00b : 1 byte (head byte only)

01b : 2 bytes (head byte + pointer)

W) LHAVESHARE

share awesome hardware A 2" a_Danar

10b : 3 bytes (head byte + pointer + 1st parameter)
11b : 4 bytes (head byte + pointer + 1st parameter + 2nd parameter)
D[5:3]: User-defined address bits (A2, Al, A0)

D[2:0]: Pointer setting
WMSBJ7:0]: MSByte of write-data to external temperature sensor.
WLSBJ7:0]: LSByte of write-data to external temperature sensor.

Temperature Sensor Read (TSR) (R43H)

Action W/R | C/D | D7 D6 |D5 |D4 | D3 |D2 D1 | DO

Read External

Temperature 1 1 RMSBJ7:0]

Sensor
1 1 RLSBJ[7:0]

This command reads the temperature sensed by the temperature sensor.
RMSBJ7:0]: MSByte read data from external temperature sensor
RLSB[7:0]: LSByte read data from external temperature sensor

VCOM And Data Interval Setting (CDI) (R50H)

Action W/R | C/D | D7 D6 D5 D4 D3 D2 D1 | DO
Set Interval Between 0 0 0 1 0 1 0 0 0 0
Vcom and

0 1 VBD[1:0] | DDX[1:0] CDI[3:0]
Data

This command indicates the interval of Vcom and data output. When setting the vertical back
porch, the total blanking will be kept (20 Hsync).

VBD[1:0]: Border data selection

B/W/Red mode (BWR=0)

W) LHAVESHARE

share awesome hardware

A 2" a_Danar

B/W mode

DDX[1:0]: Data polality.

DDX[0] for B/W mode.

B/W/Red mode (BWR=0)

DDX[0]| VBD[1:0]| LUT | DDX[0] |VBD[1:0]| LUT
00 Floating 00 LUTB
01 LUTR 01 LUTW
0 1(Default)
10 LUTW 10 LUTR
11 LUTB 11 Floating
(BWR=1)
DDX[0] | VBD[1:0] | LUT DDX[0] |VBDI[1:0]| LUT
00 Floating 00 Floating
01 LUTBW 01 LUTWB
(1->0) (1->0)
0 1(Default)
10 LUTWB 10 LUTBW
(0->1) (0->1)
11 Floating 11 Floating
DDX[1] for RED data, DDX[0] for BW data in the B/W/Red mode.
DDX[1:0] | Data{Red,| LUT | DDX[1:0]| Data{Red, | LUT
B/W} B/W}

W) LHAVESHARE

share awesome hardware A 2" a_Danar

00 LUTW 00 LUTR

01 LUTB 01 LUTR
00 10

10 LUTR 10 LUTW

11 LUTR 11 LUTB

00 LUTB 00 LUTR

01 LUTW 01 LUTR
01(Default) 11

10 LUTR 10 LUTB

11 LUTR 11 LUTW

B/W mode (BWR=1)

DDX[0] | Data{New, | LUT DDX[0] | Data{New, | LUT
old} Old}
00 LUTWW 0 LUTBW(1->0)
(0->0)
10
01 LUTBW 1 LUTWB(0->1)
(10)
10 LUTWB 0 LUTWB(1->0)
(0->1)
00 11
11 LUTBB 1 LUTBW(0->1)
(1>1)

W) LHAVESHARE

share awesome hardware

A 2" a_Danar

00 LUTBB
(0-0)

01 LUTWB
(0-1)

01(Default)

10 LUTBW
(1-0)

11 LUTWW
(1->1)

CDI[3:0]: Vcom and data interval

CDI[3:0] | Vcom and Data | CDI[3:0] | Vcom and Data
Interval Interval
0000 b | 17 hsync 0110 11
0001 16 0111 10 (Default)
0010 15
0011 14 1101 4
0100 13 1110 3
0101 12 1111 2
Low Power Detection (LPD) (R51H)
Action W/R | C/D | D7 D6 D5 D4 D3 D2 D1 | DO
0 0 0 1 0 1 0 0 0 1

W) LHAVESHARE

share awesome hardware

A 2" a_Danar

Detect Low 1 1 - - - - - - -

Power

LPD

This command indicates the input power condition. Host can read this flag to learn the battery

condition. LPD: Interval Low Power Detection Flag
0: Low power input (VDD < 2.5V) 1. Normal status (default)

TCON Setting (TCON) (R60H)

Action W/R|C/D| D7 (D6 (D5 |D4 |D3 |D2 | D1

Do

Set Gate/Source Non-

overlap Period
P 0 |1 S2G[3:0] G2S[3:0]

This command defines non-overlap period of Gate and Source.

S2G[3:0] or G2S[3:0]: Source to Gate / Gate to Source Non-overlap period

S2G[3:0] or Period S2G[3:0] or Period
G2S[3:0] G2S[3:0]

0000b 4

0001 8 1011 48
0010 12(Default) 1100 52
0011 16 1101 56
0100 20 1110 60
0101 24 1111 64

Period = 660 nS.

W) LHAVESHARE

share awesome hardware A 2" a_Danar

<« 1-line period —»

i \/ \/
Source Y X X
FAAN / Y

' 526 G2S
G (n) | « >

| S2G G2S |
G (n+1) 5 < > % >

Resolution Setting (TRES) (R61H)

Action W/R |IC/D D7 D6 D5 D4 D3 D2 D1 |DO

0 1 HRES[8]
Set Display
) 1 HRES[7:3] 0 0 0
Resolution
0 1 - - - - - - - VRESI8]
0 1 VRES[7:0]

This command defines alternative resolution and this setting is of higher priority than the RES[1:0]
in ROOH (PSR).

HRES[8:3]: Horizontal Display Resolution
VRES[8:0]: Vertical Display Resolution Active channel calculation:
GD : First active gate = GO (Fixed); LAST active gate = VRES[8:0] - 1
SD : First active source =S0 (Fixed); LAST active source = HRES[8:3]*8 — 1

GSST Setting(GSST) (R65H)

Action W/R |[C/D D7 D6 D5 D4 D3 D2 D1 DO

Gate/Source 0 0 0 1 1 0 0 1 0 1

W) LHAVESHARE

share awesome hardware

A 2" a_Danar

Start setting

o b L) A A i i A HST8
0o 1 HST[7:3] o o P

o 1 5 B 5 5 5 5 \VST[8]
o I v ST[7:0]

This command defines the First Active Gate and First Active Source of active channels.

HST[8:3]: First active source. (Default: SO)

VSTI[8:0]: First active gate. (Default: GO)

Get Status (FLG) (R71H)

Action| W/R| C/D| D7| D6 D5 D4 D3 |D2 |D1 |DO
0 0 0 |1 1 1 0 0 0 1
Read
Flags |1 1 - | PTL_flag| I’°C_ERR| I>)C_ |data_| PON| POF| BUSY
BUSY | flag

This command reads the IC status.

PTL_FLAGHPartial display status (high: partial

mode)

I2C_ERR: 1°C master error status

12C_BUSY: I2C master busy status (low active)

data_flag:

one frame data

PON: Power ON status

POF: Power OFF status

Driver has already received all the

W) LHAVESHARE

share awesome hardware A 2" a_Danar

BUSY: Driver busy status (low active)

Auto Measure Vcom (AMV) (R80H)

Action W/R|C/D|D7|D6|D5 |D4 |D3 |D2 D1 DO
Automatically | O 0 110 (0 0 0 0 0 0
measure

veom 0 |1 |- |- |AMVT[L:0]| XON| AMVS| AMV| AMVE

This command reads the IC status.

AMVTI[1:0]: Auto Measure Vcom Time

00b: 3s 01b: 5s (Default)

10b: 8s 11b: 10s XON: All Gate ON of AMV

0: Gate normally scan during Auto Measure VCOM period. (default) 1: All Gate ON during Auto
Measure VCOM period. AMVS: Source output of AMV

0: Source output OV during Auto Measure VCOM period. (default) 1: Source output VDHR during
Auto Measure VCOM period.

AMV: Analog signal
0: Get Vcom value with the VV command (R81h) (default)

1: Get Vcom value in analog signal. (External analog to digital converter) AMVE: Auto Measure
VVcom Enable (/Disable)

0: No effect
1: Trigger auto VVcom sensing.

Vcom Value (VV) (R81H)

Action W/R| C/D| D7|D6|D5| D4| D3| D2 | D1| DO

W) LHAVESHARE

share awesome hardware

A 2" a_Danar

Automatically 1 1 - - VV[5:0]
measure VVcom
This command gets the VVcom value.
VV[5:0]: Vcom Value Output
VV[5:0] Vcom value
00 0000b -0.10V
00 0001b -0.15V
00 0010b -0.20V
11 1010b -3.00V
VCM_DC Setting (VDCS) (R82H)
Action W/R |C/D |D7 D6 |D5 |D4 |D3 |D2 |Dl1 |DO
0 0 1 0 0 0 0 |0 1 0
Set
VCM_DC
- 0 1 - - VDCS[5:0]

This command sets VCOM_DC value

VDCS[5:0]: VCOM_DC Setting

VDCS[5:0]

Vcom value

00 0000b

-0.10 V (default)

00 0001b

-0.15V

W) LHAVESHARE

share awesome hardware

A 2" a_Danar

00 0010b

-0.20V

11 1010b

-3.00V

Partial Window(PTL) (R90H)

Action WR C/D D7 D6 |p5 |p4 |p3 P2 p1 po
o o L b b kL b o o o
Set Partial : i i i _ _ i i HRSTIE]
Window 1 HRST[7:3] o o 0
o 1 L L L L L | HreD[e
0 I HREDI[7:3] 1 b on
o 1 |} L L L L L L WRrsT[E
0 I VRST[7:0]
o 1 | L L L L L wreD[
0 I VRED[7:0]
o 1 - L L L L L | |rscan

This command sets partial window.

HRSTI[8:3]: Horizontal start channel bank. (value 00h~31h)

HRED[7:3]: Horizontal end channel bank. (value 00h~31h). HRED must be greater than HRST.

VRSTI[8:0]: Vertical start line. (value 000h~12Bh)

W) LHAVESHARE

share awesome hardware

A 2" a_Danar

VREDI8:0]: Vertical end line. (value 000h~12Bh). VRED must be greater than VRST.

PT_SCAN:

0: Gates scan only inside of the partial window.

1: Gates scan both inside and outside of the partial window. (default)

Partial In (PTIN) (R91H)

Action WR |CD D7 D6 |[D5 D4 D3 |D2 |D1 |DO
Partial In 0 0 1 0 0 1 0 0 0 1
This command makes the display enter
partial mode.
(33) Partial Out (PTOUT) (R92H)
Action WR |CD D7 D6 |[D5 D4 |D3 |D2 |D1 |DO
Partial In 0 0 1 0 0 1 0 0 1 0
This command makes the display exit partial mode and enter normal mode.
Program Mode (PGM) (RAOH)
Action W/R (C/D D7 D6 D5 D4 D3 D2 D1 DO
Enter Program0 0 1 0 1 0 0 0 0 0
Mode

0 1 1 0 1 0 0 1 0 1

After this command is issued, the chip would enter the program mode.

The mode would return to standby by hardware reset.

The only one parameter is a check code, the command would be excuted if check code = 0xAS5.

Active Program (APG) (RA1H)

Action

W/R |C/D

D7

D6

D5

D4

D3

D2

D1

DO

W) LHAVESHARE

share awesome hardware A 2" a_Danar

Active Program |0 0 1 0 1 0 0 0 0 1
OTP

After this command is transmitted, the programming state machine would be activated.
The BUSY flag would fall to 0 until the programming is completed.

Read OTP Data (ROTP) (RA2H)

Action W/R |C/D |D7 |D6 D5 D4 D3 D2 D1 DO
0 0 1 0 1 0 0 0 1 0
1 1 Dummy
1 1 The data of address 0x000 in the
OTP
Read OTP data for|1 1 The data of address 0x001 in the
check OTP
1 1
1 1 The data of address (n-1) in the
OTP
1 1 The data of address (n) in the OTP

The command is used for reading the content of OTP for checking the data of programming. The

value of (n) is depending on the amount of programmed data, the max address = OxFFF.

W) LHAVESHARE

share awesome hardware A 2" a_Danar

(Supply Power, Reset)

l

PGM command (inte Pragram Mode)

]

DTM command (write data)

l Apply VPP=7. 5V then wait 10ms

APG command (activate program)

l Check Busy=1 then remove VPP

ROD command (check data)

Fail
correctness ?
Pass

(Finish, Reset)

The sequence of programming OTP

Power Saving (PWS) (RE3H)

Action W/R |C/D |D7 D6 D5 D4 |D3 D2 D1 DO
Power Saving |0 0 1 1 1 0 0 0 1 1
for

Veom 0 1 VCOM_W][3:0] SD_WI[3:0]
&Source

This command is set for saving power during fresh period. If the output voltage of VCOM / Source
is from negative to positive or from positive to negative, the power saving mechanism will be

activated. The active period width is defined by the following two parameters.

VCOM_W][3:0]: VCOM power saving width (unit = line period)

VSYNC L

VCOM ! 3 ; Frame N VCOM

Source 4< Frame N Data >7

SD_W][3:0]: Source power saving width (unit = 660nS)

W) LHAVESHARE

share awesome hardware

A 2" a_Danar

52G[3:0]

G25[3:0]

o E—

Gate

e

SN N N

Source >—< E
pre S P

Line N Data

: >—<Llne (N+1) Data

SD_W[3:0]

W) LHAVESHARE

share awesome hardware A 2" a_Danar

7. Electrical Characteristics

7-1) Absolute maximum rating

Parameter Symbol Rating Unit
Logic Supply Ve -0.3t0 +6.0 \Y
Voltage

Logic Input Voltage | Vin -0.3to VCI +2.4 \Y
Operating Temp. Torr 0 to +50 °C
range

Storage Temp. range | Tste -251t0 +70 °C

7-2) Panel DC Characteristics

The following specifications apply for: VSS = 0V, VCI = 3.3V, TA = 25°C

Parameter Symbol | Conditions Min Typ Max Unit
Single ground Vss - - 0 - \Y
Logic Supply VCI - 2.3 3.3 3.6 \
Voltage

High level input VIH Digital input pins 0.7VvCl | - VCI \Y/
voltage

Low level input VIL Digital input pins 0 - 0.3VCl| V
voltage

High level output VOH Digital input pins, VCI- |- - \Y
voltage IOH= 400uA 0.4

W

WAVESHARRE

share awesome hardware

A 2" a_Danar

Low level output VOL Digital input pins , 0 - 0.4 \/
voltage IOL=-400uA
Image update current | lueoare - - 8 10 mA
Standby panel Istandby | - - - 5 UA
current
Power panel (- - 26.4 |40 mw
update) Puppate
Standby power panel | Psrsy - - - 0.0165 | mW
Operating - - 0 - 50 °C
temperature
Storage temperature | - - -25 - 70 °C
Image update Time | - - - 6 8 Sec
at 25 °C
DC/DC off

Deep sleep mode No clock

- 2 5 UA
current No input load

Ivei Ram data not retain
DC/DC off No clock

Sleep mode current No input load - 35 50 UA

IVCI

Ram data retain

The Typical power consumption is measured with following pattern transition: from

horizontal 2 gray scale pattern to vertical

W) LHAVESHARE

share awesome hardware A 2" a_Danar

2 gray scale pattern.(Note 7-1)
The standby power is the consumed power when the panel controller is in standby mode.

The listed electrical/optical characteristics are only guaranteed under the controller & waveform

provided by Waveshare.
VVcom is recommended to be set in the range of assigned value + 0.1V.

Note 7-1

The Typical power consumption

—»

7-3) Panel AC Characteristics 7-3-1) Oscillator frequency

The following specifications apply for : VSS = 0V, VCI = 3.3V, Ta = 25°C

Parameter Symbol | Conditions Min | Typ Max Unit
Internal Oscillator Fosc VCI=2.31t0 - 1.625 - MHz
frequency 3.6V

7-3-2) MCU Interface 7-3-2-1) MCU Interface Selection

In this module, there are 4-wire SPI and 3-wire SPI that can communicate with MCU. The MCU

interface mode can be set by hardware selection on BS1 pins. When it is “Low”, 4-wire SPI is

selected. When it is “High”, 3-wire SPI (9 bits SPI) is selected.

Pin Name Data/Command Interface Control Signal

Bus D1 DO CS# D/C# RES#

interface

W) LHAVESHARE

share awesome hardware A 2" a_Danar
SPI4 SDIN SCLK CS# D/C# RES#
SPI3 SDIN SCLK CS# L RES#

Table 7-1: MCU interface assignment under different bus interface mode
Note 7-2: L is connected to VSS

Note 7-3: H is connected to VVCI

7-3-2-2) MCU Serial Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCLK, serial data SDIN, D/C#, CS#. In SPI mode, DO acts
as SCLK, D1 acts as SDIN.

Function CS# D/C# | SCLK
Write

L L ™
Command
Write data L H ™

Table 7-2: Control pins of 4-wire Serial Peripheral interface
Note 7-4: {stands for rising edge of signal

SDIN is shifted into an 8-bit shift register in the order of D7, D6, ... DO. The data byte in the shift
register is written to the Graphic Display Data RAM (RAM) or command register in the same

clock. Under serial mode, only write operations are allowed.

W) LHAVESHARE

share awesome hardware A 2" a_Danar

& [1 M
swen | FFLF LA L LLALALALLSLAL
S B

“DC" keeps a same value
during the whole 8-bit cycle

somo ()08)0 2o or)(0) " or)os o3 o oo oz o1 (on) |

(write mode) TR | },_ DC=0: command _,~
"‘7 DC=1: parameter

SD;N‘:I) (b7)(p6)(ps)(p4)(p3)(p2)(D1) Do) ________Xo7)6)D5)D4)D3)D2)D1)DOY__|

(read mode) «— command —>(’4— read parameter —b{

Figure 7-1: Write procedure in 4-wire Serial Peripheral Interface mode

7-3-2-3) MCU Serial Interface (3-wire SPI)
The 3-wire serial interface consists of serial clock SCLK, serial data ADIN and CS#.

In 3-wire SP1 mode, DO acts as SCLK, D1 acts as SDIN, The pin D/C# can be connected to an

external ground.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether
9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to DO
bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in shift
register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit =

0).Under serial mode, only write operations are allowed.

Function CS# | D/ICH# SCLK
Write

L Tie LOW ™
Command
Write data L Tie LOW ™

Table 7-3: Control pins of 3-wire Serial Peripheral Interface

Note 7-5: 1stands for rising edge of signal

W) LWAVESHARE

share awesome hardware

A 2" a_Danar

CS#

—

SCLK(DO)

SDIN(D1)
(write mode)

SDIN(D1)
(read mode)

(0 {p7)(D6/p5(p4)p3(p3(D(DO(_____ YPC)D7)6(D5(D4)D3D2)D1((DYY |
Iq— command
(0)P7)D6)D5(D4)D3)P2)D1YDOY _ X1)P7){D6)(D5)D4)D3)p2)D1)DO) |
'4— command

DC=0: command
DC=1: parameter

—— - *I

read parameter

— -

“DC" keeps a same value
during the whole 8-bit cycle

Figure 7-2: Write procedure in 3-wire Serial Peripheral Interface mode

7-3-3) Timing Characteristics of Series Interface

CS# VIH
VIL
tcss

tscyow

tcsh

/-
'_’ tchw >l

1/
) al ™ iscc
wEmer L
SCLK " f
VE I~ / 7 ’\(
le lsds’ tsdh
SDIN ViH , K X X:// X X
(DIN) A DicX | D7 D6 , DO
3-wire Serial Interface — Write
CS# VIH 7
VIL 7 4
lcss tscycw tcsh tchw
L t | 1
VIH (¥ tshwt, tsi / ’{M*
SCLK vu_l.f‘ﬂ’,f\ sw,.f)\ / \ //m .
Sleisdh
SDIN V,Hi 1
(DIN) ik tacc toh
| |
SDIN VHT o X - X:// X .
(DOUT) viL 1 y =
3-wire Serial Interface — Read
Symbol | Signal Parameter Min Typ Max Unit
tcss Chip Select Setup Time 60 - - ns
tcsh CS# Chip Select Hold Time 65 - - ns

W) LHAVESHARE

share awesome hardware

A 2" a_Danar

tscc Chip Select Setup Time 20 - - ns
tchw Chip Select Setup Time 40 - - ns
tscycw Serial clock cycle (write) | 100 - - ns
tshw SCL “H” pulse width 35 - - ns
(write)
tslw SCL“L” pulse width 35 - - ns
(write)
SCLK
tscycr Serial clock cycle (Read) | 150 - - ns
tshr SCL “H” pulse width 60 - - ns
(Read)
tslr SCL “L” pulse width 60 - - ns
(Read)
tsds Data setup time 30 - - ns
tsdh Data hold time 30 - - ns
SDIN
tacc (DIN) Access time - - 10 ns
(DOUT)
toh Output disable time 15 - - ns
7-4) Power Consumption
Parameter Symbol | Conditions | TYP | Max | Unit | Remark

WA

WAVESHARE

share awesome hardware

A 2" a_Danar

mode

Panel power consumption during - 25°C 26.4 | 40 mwW | -
update
Power consumption in standby - 25°C - 0.0165| mW | -

7-5) Reference Circuit

Figure . 7-5 (1)

—1—C1
1uF/6VvV

Figure . 7-5 (2)

=3
1uF/25V

1 []

1

§ GDR.

7 RESE

< VGL

= VGH

5 TSCL

- TSDA

- BS1

5 BUSY

i RES#

T DIC#
CS#

13
DO

14

T3 DI

T3 VDDIO

% 7 VCI

= VDD

= VPP

o VSH
PREVGH |

22

=5 ST

o5 PREVGL |
YCOM |

VDD

——C6

1uF/25V

el
~

C10
1uF/25V

W) WAVESHARE

share awesome hardware

A 2" a_Danar

L
= =
" 2
o
= Cl4
C13 f
| |I (] LuF/50v
| [=
1uF/507
D1
7 |
-y
D3 &
A £ = ks
) 0.47R
a !
D2 % C12 Ql
||| I $11304EDL
1 | v
MERDS30 4 FuF 150% JS‘IZ[__
L1
SuH
Cl11
.| | 3
10uFiEY
&)
=

Figure . 7-5 (3)

FESE |

GDE__|

W) LHAVESHARE

share awesome hardware A 2" a_Danar

(TSCL

R1
2.2K
R2

2.2K

pESEmNE

D
S/IO —

SCL

SDA

VDD
NINDD § LINT &

A2

A
Al
A0

.

v, \© I~ |

B

0.1 llFi'GV

A & MER |

Figure . 7-5 (4)
8. Typical Operating Sequence 8-1) Normal Operation Flow

BWR mode & LUT form Register

W) LHAVESHARE

share awesome hardware A 2" a_Danar

»
>
A 4
<
«
~_ _ . x I _ e N P
A 4
-~ _ _ _a__ _ _ £ _a|
A 4
A 4
A 4
~_ 0 _aat |
A 4
o Iy]
—~_ _ 0 at . _aaqo
A\ 4
[1 _ afe
A 4
~:___1___ __c__|i
A
-~ _ 1 o1 _ .
\ 4
A 4 A 4
- _rr — . PR

BWR mode & LUT form OTP

W) LHAVESHARE

share awesome hardware A 2" a_Danar

»
A 4
>
«
~_ _ . x I _ e J PN
A 4
-~ _ _ i _ _ £ _a|
A 4
-~ 1 s
A 4
~_ s
v
[1 .
A 4
~ " r 1
A4
-~ _ 1 _ e .t
A 4
v A 4
- rr —_ . " 1

8-2) Reference Program Code

WAVESHARRE

share awesome hardware A 2" a_Danar

1 R\A/ID mnda .1 1 IT fram ranictar
~ N - e
—~ T N L | i~ ~ e e -t - A
AR /A A AN
[Y I
AR /AL AA A AT A A= A A -— o wa o).
-~ i ~ . P =__ ~
AR /A AA A AAA AAA AL A AL A A~ AR /A aAN
~_ . - _x o I P
AR /AL A AN
~ [r]
~iiANs o
AL _ _1_miaAys = AR /A A AN
<
A 4 “
AN n
~_ o0 _aato P T P FRE T SN
A A A~ A 1] ~iiANs
s [B R [it
Lo D | A~
AR /AL AR AL A4 N
-~ rr
L e o R AT A AAN
AR /A AA A AA A AA A AaAlA A
~_ - _n_
NIAR A ~A] P S N
AR /A AR~ A alA
s [. 1 et
AR /A FA A AN

Notel: Set border to floating.

2. BWR mode & LUT from OTP

W) LHAVESHARE

share awesome hardware A 2" a_Danar

A 4
~ __a —
~ _ _a P - I ~
v AR /A aA
—~_ _ _1 [et ¥ S PUL N DR PN
A 4 - Y {| .
-~ _ _ i _ _ €1 _a_
A 4
AR /AL A~ AL AT AL AT A LA
—~ [r 1
A 4 ARt A A
-~ _ —
A 4
A1 A A AN
m~LaaANs o
~l1 1_ M1 1A s
A 4
A 4
m~LaANs o YN
~1 1.1 1A 7
L [R x [] ax
A 4
~1 AT A
~ (] e
A 4
AR /AL AR A 30\
-~ _ _rr
A 4 ARI/A. AN
—~_ _ 0. at_ o _aato
A 4
AR /AL AA A AA A AR A _AAl A AN
~ []
v AR /A A= A LY
L [n [] e
AR /AL A A _ASN
A 4
~ _ x P _ ~
AR /A _a AN
A 4
- [

Notel: Set border to floating.
9. Optical characteristics
9-1) Specifications

Measurements are made with that the illumination is under an angle of 45 degrees, the detection is

perpendicular unless otherwise specified.

W) LHAVESHARE

share awesome hardware

A 2" a_Danar

T=25°C
SYMBOL | PARAMETER | CONDITIONS | MIN | TYPE MAX | UNIT | Note
Note
R Reflectance White 30 35 - %
9-1
Gn 2Grey Level - - DS+ (WS- - L* -
DS)xn(m-1)
CR Contrast Ratio | indoor 8 - - -
Panel’s 1000000 times or Note
) 0°C~50°C
life 5 years 9-2

WS: White state, DS: Dark state Gray state from Dark to White : DS, WS m: 2

Note 9-1: Luminance meter: Eye — One Pro Spectrophotometer

Note 9-2: Panel life will not guaranteed when work in temperature below 0 degree or above 50

degree. Each update interval time should be minimum at 180 seconds.

9-2) Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (R1) and the

reflectance in a dark area (Rd)() :

R1: white reflectance

CR=R1/Rd

Display

Rd: dark reflectance

W) LHAVESHARE

share awesome hardware A 2" a_Danar

Ring light

Detector

9-3) Reflection Ratio
The reflection ratio is expressed as:
R = Reﬂectance FaCtOI‘ white board X (L center/ Lwhite board)

L center is the luminance measured at center in a white area (R=G =B=1). L white board i the luminance
of a standard white board. Both are measured with equivalent illumination source. The viewing

angle shall be no more than 2 degrees.

)

\imuine
17 A'AlAnlL
AivAntian
AivArtinnm AQne
—~l} — 2 A'fAlAacL

R . °
aQ A'Alasl [a) Aivrarcrtinn N
AivAartinnm 10

9-4) Bi-stability

The Bi-stability standard as follows:

Bi-stability Result

W) LHAVESHARE

share awesome hardware A 2" a_Danar

AVG MAX
24 hours
White state AL* |- 3
Luminance drift
Black state AL* |- 3

10. Handling, Safety and Environmental Requirements

Warning

The display glass may break when it is dropped or bumped on a hard surface. Handle with care.

Should the display break, do not touch the electrophoretic material. In case of contact with

electrophoretic material, wash with water and soap.

Caution

The display module should not be exposed to harmful gases, such as acid and alkali gases, which

corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty

agreements.

Observe general precautions that are common to handling delicate electronic components. The
glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to
static electricity and other rough environmental conditions.

Data sheet status

Product specification | The data sheet contains final product specifications.

Limiting values

W) LHAVESHARE

share awesome hardware A 2" a_Danar

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134).
Stress above one or more of the limiting values may cause permanent damage to the device.

These are stress ratings only and operation of the device at these or any other conditions above
those given in the Characteristics sections of the specification is not implied. Exposure to limiting

values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and dose not form part of the specification.

Product environmental certification

RoHS

11. Reliability test

TEST CONDITION | METHOD REMARK
When the experimental cycle finished, the When
EPD samples will be taken out from the high | experiment
temperature environmental chamber and set | finished, the
High- T =50°C, aside for a few minutes. As EPDs returnto | EPD
1 | Temperatu re| RH=35% room temperature, testers will observe the must meet

appearance, and test electrical and optical

Operation electrical and
for 240 hrs
performance based on standard # IEC 60 optical
068-2-2Bp.
performance
standards.
Lows T = 0°C for When the experimental cycle finished, the When
EPD samples will be taken out from the low | experiment
Temperatu re | 240 _ -
) temperature environmental chamber and set | finished, the
Operation hrs _ _
aside for a few minutes. As EPDs return EPD

WAVESHARRE

share awesome hardware

A 2" a_Danar

room temperature, testers will observe the

appearance, and test electrical and optical

must meet

electrical and

appearance, and test electrical and optical

performance based on standard # IEC 60 optical
068-2-2Ab. performance
standards.
When the experimental cycle finished, the When
EPD samples will be taken out from the high | experiment
T=+70°C, | temperature environmental chamber and set | finished, the
High- RH=35% aside for a few minutes. As EPDs returnto | EPD
Temperatu re | for 240 hrs room temperature, testers will observe the must meet

appearance, and test electrical and optical

Storage . . electrical and
Test in white performance based on standard # IEC 60 optical
pattern 068-2-2Bp.

performance
standards.
When the experimental cycle finished, the When
EPD samples will be taken out from the low | experiment
T =-25°C for | temperature environmental chamber and set | finished, the
Low- 240 aside for a few minutes. As EPDs returnto | EPD
Temperatu re| hrs room temperature, testers will observe the must meet

temperature, testers will observe the

Storage . . electrical and
Test in white
performance based on standard # IEC 60 .
optical
pattern 068-2-2Ab
performance
standards.
High When the experimental cycle finished, the When
T=+40°C, EPD samples will be taken out from the experiment
Temperature,
RH=80% environmental chamber and set aside fora | finished, the
High- for240hrs few minutes. As EPDs return to room EPD
Humidity

W) LHAVESHARE

share awesome hardware A 2" a_Danar

Operation appearance, and test electrical and optical must meet
performance based on standard # IEC 60 electrical and
068-2-3CA. optical

performance
standards.

When the experimental cycle finished, the When

High T=460°C EPD samples will be taken out from the experiment
=+60° ,
environmental chamber and set aside fora | finished, the
Temperature, | RH=80% .
few minutes. As EPDs return to room EPD
6 | High- for240hrs _
o R temperature, testers will observe the must meet
umidi est In white i i
y appearance, and test electrical and optical electrical
attern
Storage P performance based on standard # IEC 60 performance
068-2-3CA. standards.
[-25°C 1. Samples are put in the Temp & When
30mins]-> Humid. Environmental Chamber. experiment
7 Temperature [+70°C Temperature cycle starts with -25°C, storage | finished, the
Cycle ’ i i : i i EPD must m
y RH=35% period 30 minutes. After 30 minutes, it ust meet
needs 30min to electrical

30mins],

W) LHAVESHARE

share awesome hardware

A 2" a_Danar

70cycles, let temperature rise to 70°C. After and optical
Test in white 30min, temperature will be adjusted to performance
pattern 70°C and storage period is 30 minutes. standards.
After 30 minutes, it needs 30min to let
temperature rise to -25°C. One
temperature cycle (2hrs) is complete.
Temperature cycle repeats 70 times.
When 70 cycles finished, the samples
will be taken out from experiment
chamber and set aside a few minutes.
As EPDs return to room temperature,
tests will observe the appearance, and
test electrical and optical performance
based on standard # IEC 60 068-2-
14NB.
UV exposure [765 W/m?for
3 o Standard # IEC 60 068-2-5 Sa
Resistance 168 hrs,40°C
Machine model:
Electrostatic
9) +/-250V, Standard # IEC61000-4-2
discharge
00Q,200pF
1.04G,Frequency
Package)
10 o 10~500Hz Full packed for shipment
Vibration
Direction :
X,Y,Z

Www.waveshare.com

177,226

178

Duration:1hours
in each direction

Package
11 |Drop

Impact

Drop from
height of 122 cm

on
Concrete surface

Drop sequence:1

corner, 3edges,
6face

One drop for
each.

Full packed for shipment

Actual EMC level to be measured on customer application.

Note: (1) The protective film must be removed before temperature test.

(2) In order to make sure the display module can provide the best display quality, the update

should be made after putting the display module in stable temperature environment for 15 mins.

12. Point and line standard

Shipment Inseption Standard

Part-A : Active area Part-B : Border area

Equipment : Electrical test fixture, Point gauge

Outline dimension :

91.0(H)x77.0(V) x1.18(D) ~ Unit : mm

179

Temperature Humidity| Illuminanc | Distance Time Angle
e
Environment
55+ 1200~
23+2°C 300 mm 35 Sec
0,
SYRH 1500Lux
Name Causes Spot size Part-A | Part-B
B/W spot in D <0.25mm Ignore
glass or
Spot protection sheet, | 0.25mm < D < 0.4mm 4 Ignore
foreign mat. Pin
Scratch on glass | Length Width Part-A
or
L <2.0mm W<0.2 mm Ignore
Scratch on FPL
Scratch or line or |
nore
defect 20 mm< L< 0.2 mm<W< 2 9
Particle is 5.0mm 0.3mm
Protection
50mm<L 0.3mm<W 0
sheet.
D1,D2<0.2mm Ignore
Air bubble Air bubble 0.2 mm < D1,D2 < 0.35mm 4 Ignore
0.35mm < D1, D2 0

Side Fragment

\/Q?

180

Ignore

X<5mm, Y<1mm & display is ok,

Remarks: Spot define: That only can be seen under WS or DS defects.

(1 Any defect which is visible under gray pattern or transition process but invisible under black

and white is disregarded.

[0 Here is definition of the “Spot” and “Scratch or line defect”.
Spot: W > 1/4L Scratch or line defect: W <1/4L

[0 Definition for L/W and D (major axis)

[J FPC bonding area pad doesn’t allowed visual inspection.

w

{_#-\/ ‘ I @ Aggregate of small air
-«
—>

| D = (a+h)/2 O%) 1 M_aj(gl
_ b —_— o
L.
Note: AQL =0.4
13. Packing

Shipment Inseption Standard

Big air bubble

axis D2

Part-A: Active area

Equipment: Electrical

91.0(H)*77.0(V) x1.18

Part-B: Border area

xture, Point gauge

s 2nd layer

total 12 layer

181

Unit: mm = \G>

tape
12 (PCS) X 12 (Layer)=144PCS

Outline dimensionempty tray :

vacuum

1st layer

Note: AQL =0.4

Pallet

Protector

9000mm

PP belt
144 (PCS) > 16 (BOX) =2304PCS

Appendix G: Prototype Code

182

1. #include <Wire.h>

2. #include <PWFusion_TCA9548A.h>

3. #include "Adafruit_TCS34725.h"

4. #include <math.h>

5.

6. //pressure sensor pins

7. #define Q1 39

8. #define Q2 34

9. #define Q3 35

10. #define Q4 32

11.

12.

13. // global variables

14. //color sensors

15. TCA9548A i2cMux;

16. Adafruit_TCS34725 tcs;//8-bit var

17. uintl6_t red, green, blue, clear;//16-bit var

18.

19. //general

20. uintl6_t p1, p2, p3, p4, Qlval, Q2val, Q3val, Q4val, Qlzero, Q2zero, Q3zero,
baglLocation;

21. int Q1diff, Q3diff, Q2diff, Q4diff;

22. int percentRed, Clear, percentBlue;

23. uint8_t error=0;

24. int minVal=3000;

25.

26. void setup()

27. {

28. // Initialize I2C and Serial

29. Serial.begin(9600);// begin comms. with serial monitor

30. Ser\ial' pr\intln("**")J
31.

32. Wire.begin();

33. i2cMux.begin(0x70);

34. i2cMux. setChannel (CHAN_NONE);

35.

36. // Initialize color sensors

37. i2cMux.begin(0x71);

38. i2cMux.setChannel (CHAN1); //QUAD1

39. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_ GAIN_60X);
40. Serial.println("\n");

41. if (tcs.begin()) {

42. Serial.println("Found sensor Q1");

43. } else {

44. Serial.println("No TCS34725 found color sensor found for Q1");
45. error=1;

46. }

47. i2cMux.setChannel (CHAN2); //QUAD2

48. tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
49. if (tcs.begin()) {

50. Serial.println("Found sensor Q2");

51. } else {

52. Serial.println("No TCS34725 found color sensor found for Q2");
53. error=1;

54, }

55. //change from MUX001 to MUX000

Q4zero,

183

56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
11e.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.

i2cMux.setChannel (CHAN_NONE);
i2cMux.begin(0x70);

i2cMux. setChannel (CHAN3) ; //QUAD3
tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
if (tcs.begin()) {
Serial.println("Found sensor Q3");
} else {
Serial.println("No TCS34725 color sensor found for Q3");
error=1;
b
i2cMux. setChannel (CHAN4) ; //QUAD4
tcs=Adafruit_TCS34725(TCS34725_ INTEGRATIONTIME_614MS, TCS34725_ GAIN_60X);
if (tcs.begin()) {
Serial.println("Found sensor Q4");
} else {
Serial.println("No TCS34725 color sensor found for Q4");
error=1;
b
i2cMux. setChannel (CHAN_NONE);
//Wire.endTransmission();
Wire.end();
//Error loo
while(error)
{
Serial.println("error");
delay(10000);

}

//Calibrate pressure sensors
analogReadResolution(12);
//pressure sensor read
Serial.println("Clear the board for calibration.");
delay(5000);

//QUAD 1
Qlval=analogRead(Q1l);
//QUAD 2
Q2val=analogRead(Q2);
//QUAD 3
Q3val=analogRead(Q3);
//QUAD 4
Q4val=analogRead(Q4);

//ensure all feet have contact

while(1)//calibration loop

{
if(Qlval>minval)
{
Serial.print("Add shim to foot in Quad 1.");
while(1)
{
Qlval=analogRead(Q1l);
if(Qlval<minval){break;}
}//wait for user adjustment
}//end if
else{pl=1;}
if(Q2val>minval)
{
Serial.print("Add shim to foot in Quad 2.");
while(1)
{

Q2val=analogRead(Q2);
if(Q2val<minval){break;}
}//wait for user adjustment
}//end if

184

121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.

else{p2=1;}

if(Q3val>minval)

{
Serial.print("Add shim to foot in Quad 3.");
while(1)
{

Q3val=analogRead(Q3);
if(Q3val<minval){break;}
}//wait for user adjustment
}//end if
else{p3=1;}
if(Q4val>minval)
{
Serial.print("Add shim to foot in Quad 4.");
while(1)
{

Q4val=analogRead(Q4);
if(Q4val<minval){break;}
}//wait for user adjustment
}Y//end if
else{p4=1;}

142.

143.

if((pl+p2+p3+p4)==4){break;}//leave calibration loop

144.

145.
146.
147.
148.
149.
150.
151.

}//end calibration loop

//calibrate zeros

Qlzero=Q1lval;

Q2zero=Q2val;

Q3zero=Q3val;

Q4zero=Q4val;

Serial.println("Pressure sensors are calibrated.");

152.

153

. }//end setup

154.

155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
17e0.
171.
172.
173.
174.
175.
176.
177.
178.
179.

void loop() {
//bag location logic
//pressure sensor read
//QUAD 1
Qlval=analogRead(Q1l);
//Serial.print("Quadrant 1: ");Serial.print(Qlval);
Qldiff=Qlzero-Q1lval;
Serial.print("Quadrant 1: ");Serial.print(Q1ldiff);
//QUAD 2
Q2val=analogRead(Q2);
//Serial.print("Quadrant 2: ");Serial.print(Q2val);
Q2diff=Q2zero-Q2val;
Serial.print("Quadrant 2: ");Serial.print(Q2diff);
//QUAD 3
Q3val=analogRead(Q3);
//Serial.print("Quadrant 3: ");Serial.print(Q3val);
Q3diff=Q3zero-Q3val;
Serial.print("Quadrant 3: ");Serial.print(Q3diff);
//QUAD 4
Q4val=analogRead(Q4);
//Serial.print("Quadrant 4: ");Serial.print(Q4val);
Q4diff=Q4zero-Q4val;

180.

181.
182.
183.
184.
185.

Serial.print("Quadrant 4: ");Serial.print(Q4diff);

//find bag location

if(Qldiff<Q2diff && Q1diff<Q3diff && Qi1diff<Q4diff)
bagLocation=3;

}//end if

else if(Q2diff<Qldiff && Q2diff<Q3diff && Q2diff<Q4diff)

{

baglLocation=4;

185

186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.

}//end else if
else if(Q3diff<Qldiff && Q3diff<Q2diff && Q3diff<Q4diff)

{
bagLocation=1;
}//end else if
else if(Q4diff<Qldiff && Q4diff<Q2diff && Q4diff<Q3diff)

bagLocation=2;
}//end else if

if (bagLocation==1)

{
Wire.begin();
i2cMux.begin(0x71);
i2cMux.setChannel (CHAN1);

}//end if location 1

if (bagLocation==2)

{
Wire.begin();
i2cMux.begin(0x71);
i2cMux.setChannel(CHAN2);

}//end if location 2

if (bagLocation==3)

{
Wire.begin();
i2cMux.begin(0x70);
i2cMux.setChannel (CHAN3);

}//end if location 3

if (bagLocation==4)

{
Wire.begin();
i2cMux.begin(0x70);
i2cMux.setChannel (CHAN4) ;

}//end if location 4

tcs.getRawData(&red, &green, &blue, &clear);

Clear=clear/100;

percentRed=red/Clear;

percentBlue=blue/Clear;

//Serial.print("Red= "); Serial.print(percentRed,DEC); Serial.print("
//Serial.print("Blue= "); Serial.print(percentBlue,DEC); Serial.println("

if(percentRed>70)
{

Serial.println("The board has no bags.");
}Y//end if
else if(percentRed<=percentBlue+5)

{

Serial.print("A blue bag is in quadrant ");Serial.print(baglLocation);

Serial.println(".");

237.
238.
239.
240.

}//end else if
else if(percentRed>(percentBlue+5))
{

Serial.print("A red bag is in quadrant ");Serial.print(baglLocation);

Serial.println(".");

241.
242.
243.

}//end else if

delay(3000);

244. }//end loop

245.

")

")

Appendix H: Primary Communication Code

186

#include <esp_now.h>
#include <WiFi.h>
#include <esp _wifi.h> // only for esp wifi_set_channel()

// Global copy of slave
esp_now_peer_info_t slave;
#tdefine CHANNEL 1

#tdefine PRINTSCANRESULTS ©
#tdefine DELETEBEFOREPAIR ©

VWoONOOUTE WN R

11. struct DataPacket{

13. int redscore;
14. int bluescore;

16. };
18. DataPacket dataToSend;
20. const int buttonPin = 2;

22. void setup() {

23. Serial.begin(115200);

24. //Set device in STA mode to begin with

25. WiFi.mode(WIFI_STA);

26. esp_wifi_set_channel (CHANNEL, WIFI_SECOND_CHAN_NONE);

27. Serial.println("ESPNow/Basic/Master Example");

28. // This is the mac address of the Master in Station Mode

29. Serial.print("STA MAC: "); Serial.println(WiFi.macAddress());
30. Serial.print("STA CHANNEL "); Serial.println(WiFi.channel());
31. // Init ESPNow with a fallback logic

32. InitESPNow();

33. // Once ESPNow is successfully Init, we will register for Send CB to
34. // get the status of Trasnmitted packet

35. esp_now_register_send_cb(OnDataSent);

37. //Scores
38. dataToSend.redscore = 2;
39. dataToSend.bluescore = 2;

41. pinMode(buttonPin, INPUT_PULLUP);
43, }

45. // Init ESP Now with fallback

46. void InitESPNow() {

47. WiFi.disconnect();
48. if (esp_now_init() == ESP_OK) {

49. Serial.println("ESPNow Init Success");

50. }

51. else {

52. Serial.println("ESPNow Init Failed");

53. // Retry InitESPNow, add a counte and then restart?
54. // InitESPNow();

55. // or Simply Restart

56. ESP.restart();

187

57. }

58. }

59.

60. // Scan for slaves in AP mode

61. void ScanForSlave() {

62. int16_t scanResults = WiFi.scanNetworks(false, false, false, 300, CHANNEL); // Scan only
on one channel

63. // reset on each scan

64. bool slaveFound = 9;

65. memset (&slave, 0, sizeof(slave));
66.

67. Serial.println("");
68. if (scanResults == 0) {

69. Serial.println("No WiFi devices in AP Mode found");
70. } else {

71. Serial.print("Found "); Serial.print(scanResults); Serial.println(" devices ");
72. for (int i = @; i < scanResults; ++i) {

73. // Print SSID and RSSI for each device found

74. String SSID = WiFi.SSID(i);

75. int32_t RSSI = WiFi.RSSI(1i);

76. String BSSIDstr = WiFi.BSSIDstr(i);

77.

78. if (PRINTSCANRESULTS) {

79. Serial.print(i + 1);

80. Serial.print(": ");

81. Serial.print(SSID);

82. Serial.print(" (");

83. Serial.print(RSSI);

84. Serial.print(")");

85. Serial.println("");

86. }

87. delay(10);

88. // Check if the current device starts with "Slave’
89. if (SSID.indexOf("Slave") == 0) {

90. // SSID of interest

91. Serial.println("Found a Slave.");

92. Serial.print(i + 1); Serial.print(": "); Serial.print(SSID); Serial.print(" [");

Serial.print(BSSIDstr); Serial.print("]"); Serial.print(" ("); Serial.print(RSSI);
Serial.print(")"); Serial.println("");

93. // Get BSSID => Mac Address of the Slave
94. int mac[6];
95. if (6 == sscanf(BSSIDstr.c_str(), "%x:%x:%x:%x:%x:%x", &mac[0], &mac[1l], &mac[2],
&mac[3], &mac[4], &mac[5])) {
96. for (int ii = 0; ii < 6; ++ii) {
97. slave.peer_addr[ii] = (uint8_t) mac[ii];
98. }
99. }
100.
101. slave.channel = CHANNEL; // pick a channel
102. slave.encrypt = 0; // no encryption
103.
104. slaveFound = 1;
105. // we are planning to have only one slave in this example;
106. // Hence, break after we find one, to be a bit efficient
107. break;
108. }
109. }
110. }
111.
112. if (slaveFound) {
113. Serial.println("Slave Found, processing..");
114. } else {
115. Serial.println("Slave Not Found, trying again.");
116. }

117.

188

118.
119.

120.

}

121.
. // Check if the slave is already paired with the master.
. // If not, pair the slave with master

122
123

124.

125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.

170.

}

171.

172.

173.
174.
175.
176.
177.
178.
179.
180.
181.
182.

// clean up ram
WiFi.scanDelete();

bool manageSlave() {

if (slave.channel == CHANNEL) {

}

}

if (DELETEBEFOREPAIR) {
deletePeer();
}

Serial.print("Slave Status: ");

// check if the peer exists

bool exists = esp_now_is_peer_exist(slave.peer_addr);
if (exists) {

// Slave already paired.

Serial.println("Already Paired");

return true;

} else {

// Slave not paired, attempt pair

esp_err_t addStatus = esp_now_add_peer(&slave);

if (addStatus == ESP_OK) {

// Pair success
Serial.println("Pair success");
return true;

} else if (addStatus == ESP_ERR_ESPNOW_NOT_INIT) {
// How did we get so far!!
Serial.println("ESPNOW Not Init");
return false;

} else if (addStatus == ESP_ERR_ESPNOW_ARG) {
Serial.println("Invalid Argument");
return false;

} else if (addStatus == ESP_ERR_ESPNOW_FULL) {
Serial.println("Peer list full");
return false;

} else if (addStatus == ESP_ERR_ESPNOW_NO_MEM) {
Serial.println("Out of memory");
return false;

} else if (addStatus == ESP_ERR_ESPNOW_EXIST) {
Serial.println("Peer Exists");
return true;

} else {

Serial.println("Not sure what happened");
return false;

}

}

else {

// No slave found to process
Serial.println("No Slave found to process");
return false;

void deletePeer() {

esp_err_t delStatus = esp_now_del peer(slave.peer_addr);
Serial.print("Slave Delete Status: ");
if (delStatus == ESP_OK) {

}

}

// Delete success

Serial.println("Success");

else if (delStatus == ESP_ERR_ESPNOW_NOT_INIT) {
// How did we get so far!!
Serial.println("ESPNOW Not Init");

else if (delStatus == ESP_ERR_ESPNOW_ARG) {
Serial.println("Invalid Argument");

189

183. } else if (delStatus == ESP_ERR_ESPNOW_NOT_FOUND) {

184. Serial.println("Peer not found.");

185. } else {

186. Serial.println("Not sure what happened");

187. }

188. }

189.

190. // send data

191. void sendData() {

192.

193. const uint8_t *peer_addr = slave.peer_addr;

194. Serial.print("Sending"); //Serial.println(dataToSend);

195. esp_err_t result = esp_now_send(peer_addr, (uint8_ t *)&dataToSend, sizeof(dataToSend));
196. Serial.print("Send Status: ");

197. if (result == ESP_OK) {

198. Serial.println("Success");

199. } else if (result == ESP_ERR_ESPNOW_NOT_INIT) {

200. // How did we get so far!!

201. Serial.println("ESPNOW not Init.");

202. } else if (result == ESP_ERR_ESPNOW_ARG) {

203. Serial.println("Invalid Argument");

204. } else if (result == ESP_ERR_ESPNOW_INTERNAL) {

205. Serial.println("Internal Error");

206. } else if (result == ESP_ERR_ESPNOW_NO_MEM) {

207. Serial.println("ESP_ERR_ESPNOW_NO_MEM");

208. } else if (result == ESP_ERR_ESPNOW_NOT_FOUND) {

209. Serial.println("Peer not found.");

210. } else {

211. Serial.println("Not sure what happened");

212, }

213.

214. if (digitalRead(buttonPin) == LOW)

215, {

216. dataToSend.redscore++;

217. }

218. if (digitalRead(buttonPin) == LOW)

219. {

220. dataToSend.bluescore++;

221, }

222. //dataToSend.redscore++;

223. //dataToSend.bluescore++;

224. }

225.

226. // callback when data is sent from Master to Slave

227. void OnDataSent(const uint8_ t *mac_addr, esp_now_send_status_t status) {
228. char macStr[18];

229. snprintf(macStr, sizeof(macStr), "%02x:%02x:%02x:%02x:%02x:%02x",
230. mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], mac_addr[4], mac_addr[5]);
231. Serial.print("Last Packet Sent to: "); Serial.println(macStr);
232. Serial.print("Last Packet Send Status: "); Serial.println(status == ESP_NOW_SEND_SUCCESS ?
"Delivery Success" : "Delivery Fail");

233. }

234.

235. void loop() {

236. // In the loop we scan for slave

237. ScanForSlave();

238. // If Slave is found, it would be populate in “slave’ variable
239. // We will check if “slave’ is defined and then we proceed further
240. if (slave.channel == CHANNEL) { // check if slave channel is defined
241. // "slave is defined

242. // Add slave as peer if it has not been added already

243, bool isPaired = manageSlave();

244 if (isPaired) {

245. // pair success or already paired

246. // Send data to device

190

247.
248.
249.
250.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.

sendData();
} else {
// slave pair failed
Serial.println("Slave pair failed!");
}
}

else {
// No slave found to process

}

// wait for 1 second to run the logic again
delay(5000);

Appendix I: Secondary Communication Code

VLoONOOUVTEA WNPR

#include <esp_now.h>
#include <WiFi.h>

#define CHANNEL 1

int receivedValuel;
int receivedValue2;

// Init ESP Now with fallback

. void InitESPNow() {

WiFi.disconnect();

if (esp_now_init() == ESP_OK) {
Serial.println("ESPNow Init Success");

¥

else {
Serial.println("ESPNow Init Failed");
// Retry InitESPNow, add a counte and then restart?
// InitESPNow();
// or Simply Restart
ESP.restart();

}

¥

. // config AP SSID
. void configDeviceAP() {

const char *SSID = "Slave_ 1";

bool result = WiFi.softAP(SSID, "Slave 1 Password", CHANNEL, ©);

if (!result) {
Serial.println("AP Config failed.");

} else {
Serial.println("AP Config Success. Broadcasting with AP: " + String(SSID));
Serial.print("AP CHANNEL "); Serial.println(WiFi.channel());

}

}

. void setup() {

Serial.begin(115200);
Serial.println("ESPNow/Basic/Slave Example");
//Set device in AP mode to begin with
WiFi.mode(WIFI_AP);

// configure device AP mode

configDeviceAP();

191

43. // This is the mac address of the Slave in AP Mode

44. Serial.print("AP MAC: "); Serial.println(WiFi.softAPmacAddress());
45. // Init ESPNow with a fallback logic

46. InitESPNow();

47. // Once ESPNow is successfully Init, we will register for recv CB to
48. // get recv packer info.

49. esp_now_register_recv_cb(OnDataRecv);

50. }

51.

52. struct DataPacket {

53. int valuel;

54, int value2;

55. };

56.

57. // callback when data is recv from Master

58. void OnDataRecv(const uint8_t *mac_addr, const uint8_t *data, int data_len)
59. char macStr[18];

60. snprintf(macStr, sizeof(macStr), "%02x:%02x:%02x:%02x:%02x:%02x",

61. mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], mac_addr[4],
62. Serial.print("Last Packet Recv from: "); Serial.println(macStr);

63. //Serial.print("Last Packet Recv Data: "); Serial.println(*data);

64. Serial.println("");

65. DataPacket* packet = (DataPacket*)data;
66. int receivedValuel = packet->valuel;
67. int receivedValue2 = packet->value2;
68.

69.

70.

71. Serial.print("Red Score is ");

72. Serial.println(receivedValuel);

73. Serial.print("Blue Score is ");

74. Serial.println(receivedValue2);

75.

76. if(receivedValuel >= 21)

77. |

78. Serial.print("Red team Wins");

79. }

80.

81. if(receivedValue2 >= 21)

82. {

83. Serial.print("Blue team Wins");
84. }

85.

86. }

87.

88.

89.

90. void loop() {
91. // Chill
92.

93. }

94.

mac_addr[5]);

Appendix J: Gameplay Code

1. // Test values were added to progress the gameplay
2.
3. #include <Wire.h>

192

#include <PWFusion_TCA9548A.h>

#include "Adafruit_TCS34725.h"

#include <math.h>

#include <esp_now.h>

#include <WiFi.h>

#tinclude <esp wifi.h> // only for esp_wifi_set_channel()

. #include <GxEPD.h>

. #include <GXGDEW@42T2/GXGDEW@42T2.h> // 4.2" b/w
. #include <Fonts/FreeMonoBold24pt7b.h>

. #include <GxIO/GxIO_SPI/GxIO_SPI.h>

. #include <GxIO/GxIO.h>

. // Global copy of slave

. esp_now_peer_info_t slave;
. #define CHANNEL 1

. #define PRINTSCANRESULTS ©
. #define DELETEBEFOREPAIR ©

. //pressure sensor pins
. #define Q1 26
. #define Q2 27
. #define Q3 14
. #define Q4 12

. #define PWR1 39
. #define PWR2 34
. #define PWR3 35
. #define PWR4 32
. #define on HIGH
. #define off LOW

. int Qlzero; int Q2zero; int Q3zero; int Q4zero;

. int Qlval; int Q2val; int Q3val; int Q4val;

. int Q5val; int Q6val; int Q7val; int Q8val;

. int Q9val; int Qleval; int Qllval; int Q12val;

. int Q13val; int Ql4val; int Q15val; int Qléval;

. int Q17val; int Q18val; int Q19val; int Q2@val;

. int Q21val; int Q22val; int Q23val; int Q24val;

. int Q25val; int Q26val; int Q27val; int Q28val;

. int Q29val; int Q3@val; int Q31val; int Q32val;

. int Q1diff; int Q2diff; int Q3diff; int Q4diff; int bagl[4];

. int Q5diff; int Q6diff; int Q7diff; int Q8diff; int bag2[4];

. int Q9diff; int Qlediff; int Qlldiff; int Ql2diff; int bag3[4];
. int Q13diff; int Ql4diff; int Q15diff; int Qlédiff; int bagd[4];
. int Q17diff; int Q18diff; int Q19diff; int Q20diff; int bag5[4];
. int Q21diff; int Q22diff; int Q23diff; int Q24diff; int bag6[4];
. int Q25diff; int Q26diff; int Q27diff; int Q28diff; int bag7[4];
. int Q29diff; int Q3ediff; int Q31diff; int Q32diff; int bag8[4];
. int minval = 3000; int Turn = 1; int baglLocation;

. //u_int8_t round = 0;

. int bagsensedonboard = 0; int bagsensedinhole = 0;

. int pl1, p2, p3, p4;

. int TeamlScore = 0;

. int Team2Score = 0;

. int TeamlScoreCurrent = 0;

. int Team2ScoreCurrent = 0;

. const int buttonPinl = 13;

. const int buttonPin2

33;

. struct DataPacket
.t

. int TeamlScore;

. int Team2Score;

-5

193

69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
11e.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.

DataPacket dataToSend;

void setup() {
// put your setup code here, to run once:
Serial.begin(9600);// begin comms. with serial monitor

Serial. pr\intln("**");

analogReadResolution(12);

//pressure sensor read

Serial.println("Clear the board for calibration.");

delay(5000);

//QUAD 1

Qlval=analogRead(Q1);

//QUAD 2

Q2val=analogRead(Q2);

//QUAD 3

Q3val=analogRead(Q3);

//QUAD 4

Q4val=analogRead(Q4);

//ensure all feet have contact

while(1)//calibration loop

if(Qlval>minval)
{
Serial.print("Add shim to foot in Quad 1.");
while(1)
{
Qlval=analogRead(Q1);
if(Qlval<minVal){break;}
}//wait for user adjustment
}//end if
else{pl=1;}
if(Q2val>minval)
{
Serial.print("Add shim to foot in Quad 2.");
while(1)
{
Q2val=analogRead(Q2);
if(Q2val<minval){break;}
}//wait for user adjustment
}//end if
else{p2=1;}
if(Q3val>minval)
{
Serial.print("Add shim to foot in Quad 3.");
while(1)

Q3val=analogRead(Q3);
if(Q3val<minval){break;}
}//wait for user adjustment
}Y//end if
else{p3=1;}
if(Q4val>minval)
{
Serial.print("Add shim to foot in Quad 4.");
while(1)
{
Q4val=analogRead(Q4);
if(Q4val<minval){break;}
}//wait for user adjustment
}//end if
else{p4=1;}

if((pl+p2+p3+p4)==4){break;}//leave calibration loop

}//end calibration loop

194

134. Serial.println("out of loop");

135. //calibrate zeros

136. Qlzero=Q1lval;

137. Q2zero=Q2val;

138. Q3zero=Q3val;

139. Q4zero=Q4val;

140.

141. Serial.println(Qlzero);

142. Serial.println(Q2zero);

143. Serial.println(Q3zero);

144. Serial.println(Q4zero);

145.

146. // Set button pins as inputs

147. pinMode(buttonPinl, INPUT);

148. pinMode (buttonPin2, INPUT);

149. }

150.

151. void pointcalculation()

152. {

153.

154. if (TeamlScoreCurrent > Team2ScoreCurrent)
155. {

156. TeamlScore = TeamlScore + TeamlScoreCurrent - Team2ScoreCurrent;
157. TeamlScoreCurrent = Team2ScoreCurrent = 0;
158. }

159. else if (TeamlScoreCurrent < Team2ScoreCurrent)
160. {

161. Team2Score = Team2Score + Team2ScoreCurrent - TeamlScoreCurrent;
162. TeamlScoreCurrent = Team2ScoreCurrent = 0;
163. }

164. else

165. {

166. TeamlScore = TeamlScore;

167. Team2Score = Team2Score;

168. TeamlScoreCurrent = Team2ScoreCurrent = 0;
169. }

170. }

171.

172. void endgame()

173. {

174. if (TeamlScore >= 21 && Team2Score < 21)

175. |

176. Serial.println("Team 1 wins");

177. TeamlScore = Team2Score = @; //resets score
178.

179. else if (Team2Score >= 21 && TeamlScore < 21)
180. {

181. Serial.println("Team 2 wins");

182. TeamlScore = Team2Score = 0; //resets score
183. }

184. }

185.

186. void loop() {

187. // put your main code here, to run repeatedly:
188. if(Turn==1)

189. {

190. //bag 1

191. if (digitalRead(buttonPinl) == HIGH)

192. {

193. digitalWrite(PWR1, on);

194. delay(2590);

195. Qlval = analogRead(Q1);

196. digitalWrite(PWR1, off);

197. digitalWrite(PWR2, on);

198. delay(250);

195

199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244.
245.
246.
247.
248.
249.
250.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.

Q2val = analogRead(Q2);
digitalWrite(PWR2, off);
digitalWrite(PWR3, on);
delay(2590);

Q3val = analogRead(Q3);
digitalWrite(PWR3, off);
digitalWrite(PWR4, on);
delay(2590);

Q4val = analogRead(Q4);
digitalWrite(PWR4, off);

Q1diff = Qlval-Qlzero;
Q2diff = Q2val-Q2zero;
Q3diff = Q3val-Q3zero;
Q4diff = Q4val-Q4zero;

bagl[1] = Q1diff; //bag 1 location
bagl[2] = Q2diff;
bagl[3] = Q3diff;
bagl[4] Q4diff;

1f(Q1diff<Q2diff && Q1diff<Q3diff && Qldiff<Q4diff)

bagLocation=3;
bagsensedonboard = 1;
// Turn on quad 3 color sensor mux
}//end if
else if(Q2diff<Qldiff && Q2diff<Q3diff && Q2diff<Q4diff)

baglLocation=4;
bagsensedonboard = 1;
// Turn on quad 4 color sensor mux
}//end else if
else if(Q3diff<Qldiff && Q3diff<Q2diff && Q3diff<Q4diff)
{
bagLocation=1;
bagsensedonboard = 1;
// Turn on quad 1 color sensor mux
}//end else if
else if(Q4diff<Qldiff && Q4diff<Q2diff && Q4diff<Q3diff)
{
bagLocation=2;
bagsensedonboard = 1;
// Turn on quad 2 color sensor mux
}//end else if
else
{
bagsensedonboard = 0;

}

if (bagsensedonboard == 1)

{

TeamlScoreCurrent = TeamlScoreCurrent + 1;
}

else if (bagsensedinhole == 1)

{

TeamlScoreCurrent = TeamlScoreCurrent + 3;

}

TeamlScoreCurrent = TeamlScoreCurrent+1;
Turn = Turn+l;

Serial.println(Qidiff);
Serial.println(Q2diff);
Serial.println(Q3diff);
Serial.println(Q4diff);

196

264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.
323.
324.
325.
326.
327.
328.

¥

Serial.println(bagLocation);
Serial.println(TeamlScoreCurrent);
Serial.println("It is team 2 turn");
delay(500);

//bag 2
if(Turn==2)

{

//bag 2
if(digitalRead(buttonPin2) == HIGH)

{

digitalWrite(PWR1, on);
delay(2590);

Q5val = analogRead(Q1);
digitalWrite(PWR1l, off);
digitalWrite(PWR2, on);
delay(250);

Q6val = analogRead(Q2);
digitalWrite(PWR2, off);
digitalWrite(PWR3, on);
delay(250);

Q7val = analogRead(Q3);
digitalWrite(PWR3, off);
digitalWrite(PWR4,on);
delay(250);

Q8val = analogRead(Q4);
digitalWrite(PWR4, off);

Q5diff = Q5val-Qlval;
Q6diff = Q6val-Q2val;
Q7diff = Q7val-Q3val;

Q8diff = Q8val-Q4val;

bag2[1] = Q5diff; //bag 2 location

bag2[2] = Q6diff;
bag2[3] = Q7diff;
bag2[4] = Q8diff;

if(Q5diff<Qediff && Q5diff<Q7diff && Q5diff<Q8diff)
{
baglLocation=3;
bagsensedonboard = 1;
}//end if
else if(Q6diff<Q5diff && Q6diff<Q7diff && Q6diff<Q8diff)
{
bagLocation=4;
bagsensedonboard = 1;
}//end else if
else if(Q7diff<Q5diff && Q7diff<Qediff && Q7diff<Q8diff)
{
bagLocation=1;
bagsensedonboard = 1;
}//end else if
else if(Q8diff<Q5diff && Q8diff<Q6diff && Q8diff<Q7diff)
{
bagLocation=2;
bagsensedonboard = 1;
}//end else if
else
{

bagsensedonboard

}

n
(]
e

197

329. if (bagsensedonboard == 1)

330. {

331. Team2ScoreCurrent = Team2ScoreCurrent + 1;
332.

333. else if (bagsensedinhole == 1)
334, {

335. Team2ScoreCurrent = Team2ScoreCurrent + 3;
336. }

337.

338. Turn = Turn+l;

339. Serial.println(Q5diff);

340. Serial.println(Qediff);

341. Serial.println(Q7diff);

342. Serial.println(Q8diff);

343. Serial.println(baglLocation);

344. Serial.println(Team2ScoreCurrent);
345. Serial.println("It is team 1 turn");
346. delay(500);

347. }

348.

349. }

350. //bag 3

351. if(Turn==3)

352, {

353. //bag 3

354, if(digitalRead(buttonPinl) == HIGH)
355. {

356. digitalWrite(PWR1, on);

357. delay(250);

358. Q9val = analogRead(Q1);

359, digitalWrite(PWR1, off);

360. digitalWrite(PWR2, on);

361. delay(250);

362. Q10val = analogRead(Q2);

363. digitalWrite(PWR2, off);

364. digitalWrite(PWR3, on);

365. delay(250);

366. Qllval = analogRead(Q3);

367. digitalWrite(PWR3, off);

368. digitalWrite(PWR4, on);

369. delay(250);

370. Q12val = analogRead(Q4);

371. digitalWrite(PWR4, off);

372.

373. Qodiff = Q9val-Q5val;

374. Qlediff = Qleval-Qé6val;

375. Q11diff = Qllval-Q7val;

376. Ql2diff = Ql2val-Q8val;

377.

378. bag3[1] = Q9diff; //bag 3 location
379. bag3[2] = Qlediff;

380. bag3[3] = Q11diff;

381. bag3[4] = Ql2diff;

382.

383. if(Qodiff«Qlodiff && Q9diff<Qlldiff && Q9diff<Ql2diff)
384. {

385. bagLocation=3;

386. bagsensedonboard = 1;

387. }//end if

388. else if(Qlediff<Qodiff && Qlediff<Qlidiff && Qlediff<Ql2diff)
389. {

390. baglLocation=4;

391. bagsensedonboard = 1;

392. }//end else if

393. else if(Q11diff<Qodiff && Qlldiff<Qlediff && Q1ldiff<Ql2diff)

198

394.
395.
396.
397.
398.
399.
400.
401.
402.
403.
404.
405.
406.

{
bagLocation=1;
bagsensedonboard = 1;
}//end else if
else if(Ql2diff<Qodiff && Ql2diff<Qlediff && Q1l2diff<Qlidiff)
{
bagLocation=2;
bagsensedonboard = 1;
}//end else if
else
{

}

bagsensedonboard = 0;

407.

408.
409.
410.

if (bagsensedonboard == 1)

{

411.

412.
413.
414.
415.
416.

TeamlScoreCurrent = TeamlScoreCurrent + 1;
else if (bagsensedinhole == 1)

{

TeamlScoreCurrent = TeamlScoreCurrent + 3;
}

TeamlScoreCurrent = TeamlScoreCurrent+1;

417.

418.
419.
420.
421.
422.
423.

Turn = Turn+l;
Serial.println(bagLocation);
Serial.println(TeamlScoreCurrent);
Serial.println("It is team 2 turn");
delay(500);

424.

425.

426

427.
428.

429

430.
431.
432.
433.
434,
435.
436.
437.
438.
439.
440.
441.
442.
443,
444
445,
446.
447 .

¥

. //bag 4

if(Turn==4)

{

. //bag 4

if(digitalRead(buttonPin2) == HIGH)

{
digitalWrite(PWR1, on);
delay(250);
Q13val = analogRead(Q1);
digitalWrite(PWR1, off);
digitalWrite(PWR2, on);
delay(250);
Ql4val = analogRead(Q2);
digitalWrite(PWR2, off);
digitalWrite(PWR3, on);
delay(250);
Q15val = analogRead(Q3);
digitalWrite(PWR3, off);
digitalWrite(PWR4, on);
delay(2590);
Q16val = analogRead(Q4);
digitalWrite(PWR4, off);

448.

449.
450.
451.
452.

Q13diff = Q13val-Q9val;

Q14diff = Ql4val-Qleval;
Q15diff = Q15val-Qlival;
Qlediff = Qléval-Ql2val;

453.

454,
455.
456.
457.

baga[1] = Q13diff; //bag 4 location
baga[2] = Q14diff;
bag4d[3] = Q15diff;
bag4[4] = Qlediff;

458.

199

459.
460.
461.
462.
463.
464 .

if(Q13diff<Q14diff && Q13diff<Q15diff && Q13diff<Qléediff)
{
bagLocation=3;
bagsensedonboard = 1;
}//end if
else if(Q15diff<Q13diff && Q15diff<Ql4diff && Q15diff<Qlédiff)

465.

466.
467.
468.
469.

bagLocation=4;
bagsensedonboard = 1;
}//end else if
else if(Q15diff<Q13diff && Q15diff<Ql4diff && Q15diff<Qléediff)

470.

471.
472.
473.
474.
475.
476.
477.
478.
479.
480.
481.
482.

bagLocation=1;

bagsensedonboard = 1;
}//end else if
else if(Ql6diff<Q13diff && Qlédiff<Qladiff && Qlé6diff<Ql5diff)
{

bagLocation=2;

bagsensedonboard = 1;
}//end else if
else
{
bagsensedonboard = 0;
}

483.

484.
485.
486.

if (bagsensedonboard == 1)

487.

488.
489.
490.
491.

{

Team2ScoreCurrent = Team2ScoreCurrent + 1;
else if (bagsensedinhole == 1)

{

Team2ScoreCurrent = Team2ScoreCurrent + 3;
}

492.

493.
494
495.
496.
497.
498.

Turn = Turn+l;
Serial.println(bagLocation);
Serial.println(Team2ScoreCurrent);
Serial.println("It is team 1 turn");
delay(500);

499.

500.

}

501.

502.
503.

504

505.
506.
507.
508.
509.
510.
511.
512.
513.
514.
515.
516.
517.
518.
519.
520.
521.
522.

if(Turn==5)
{
. //bag 5
if(digitalRead(buttonPinl) == HIGH)
{
digitalWrite(PWR1, on);
delay(250);
Q17val = analogRead(Q1);
digitalWrite(PWR1, off);
digitalWrite(PWR2, on);
delay(2590);
Q18val = analogRead(Q2);
digitalWrite(PWR2, off);
digitalWrite(PWR3, on);
delay(2590);
Q19val = analogRead(Q3);
digitalWrite(PWR3, off);
digitalWrite(PWR4, on);
delay(250);
Q20val = analogRead(Q4);
digitalWrite(PWR4, off);

523.

200

524.
525.
526.
527.

Q17diff = Q17val-Q13val; //-Q13val?
018diff = Q18val-Ql4val;
Q19diff = Q19val-Q15val;
020diff = Q20val-Qié6val;

528.

529.
530.
531.
532.

bag5[1] = Q17diff; //bag 5 location
bag5[2] = Q18diff;
bag5[3] = Q19diff;
bag5[4] = Q20diff;

533.

534.

1f(Q17diff<Q18diff && Q17diff<Qlodiff && Q17diff<Q2ediff)

535.

536.
537.
538.
539.
540.
541.
542.
543.
544.
545.
546.
547.
548.
549.
550.
551.
552.
553.
554.
555.
556.
557.

bagLocation=3;

bagsensedonboard = 1;
}//end if
else if(Q18diff<Q1l7diff && Q18diff<Q19diff && Q18diff<Q2ediff)
{

bagLocation=4;

bagsensedonboard = 1;
}//end else if
else if(Q19diff<Q17diff && Q19diff<Q18diff && Q1l9diff<Q2ediff)
{

baglLocation=1;

bagsensedonboard = 1;
}//end else if
else if(Q20diff<Q17diff && Q20diff<Q18diff && Q20diff<Ql9diff)
{

baglLocation=2;

bagsensedonboard = 1;
}//end else if

else

{

bagsensedonboard

}

1}
(]
.

558.

559.
560.
561.

if (bagsensedonboard == 1)

562.

563.
564.
565.
566.

{

TeamlScoreCurrent = TeamlScoreCurrent + 1;
else if (bagsensedinhole == 1)

{

TeamlScoreCurrent = TeamlScoreCurrent + 3;
}

567.

568.
569.
570.
571.
572.
573.
574.

TeamlScoreCurrent = TeamlScoreCurrent+1;
Turn = Turn+l;
Serial.println(bagLocation);

575.

576.

577.

578.
579.

580

581.
582.
583.
584.
585.
586.
587.
588.

Serial.println(TeamlScoreCurrent);
Serial.println("It is team 2 turn");
delay(500);
}
¥
if(Turn==6)
{
. //bag 6
if(digitalRead(buttonPin2) == HIGH)
{

digitalWrite(PWR1, on);
delay(2590);

Q21val = analogRead(Q1);
digitalWrite(PWR1, off);
digitalWrite(PWR2, on);
delay(250);

201

589.
590.
591.
592.
593.
594.
595.
596.
597.
598.
599.
600.
601.
602.
603.
604.
605.
606.
607.
608.
609.
610.
611.
612.
613.
614.
615.
616.
617.
618.
619.
620.
621.
622.
623.
624.
625.
626.
627.
628.
629.
630.
631.
632.
633.
634.
635.
636.
637.
638.
639.
640.
641.
642.
643.
644.
645.
646.
647.
648.
649.
650.
651.
652.
653.

Q22val = analogRead(Q2);
digitalWrite(PWR2, off);
digitalWrite(PWR3, on);
delay(2590);

Q23val = analogRead(Q3);
digitalWrite(PWR3, off);
digitalWrite(PWR4, on);
delay(2590);

Q24val = analogRead(Q4);
digitalWrite(PWR4, off);

Q21diff = Q21val-Q17val;
022diff = Q22val-Q18val;
Q23diff = Q23val-Q19val;
024diff = Q24val-Q20val;

bag6[1] = Q21diff; //bag 6 location
bag6[2] = Q22diff;
bag6[3] = Q23diff;
bag6[4] = Q24diff;

1f(Q21diff<Q22diff && Q21diff<Q23diff && Q21diff<Q24diff)

bagLocation=3;

bagsensedonboard = 1;
}Y//end if
else if(Q22diff<Q21diff && Q22diff<Q23diff && Q22diff<Q24diff)
{

bagLocation=4;

bagsensedonboard = 1;
}//end else if
else if(Q23diff<Q21diff && Q23diff<Q2diff && Q23diff<Q24diff)
{

baglLocation=1;

bagsensedonboard = 1;
}//end else if
else if(Q24diff<Q21diff && Q24diff<Q22diff && Q24diff<Q23diff)
{

bagLocation=2;

bagsensedonboard = 1;
}//end else if
else
{
bagsensedonboard = 0;
}

if (bagsensedonboard == 1)

{

Team2ScoreCurrent = Team2ScoreCurrent + 1;

else if (bagsensedinhole == 1)

{

Team2ScoreCurrent = Team2ScoreCurrent + 3;
}

Turn = Turn+l;
Serial.println(bagLocation);
Serial.println(Team2ScoreCurrent);
Serial.println("It is team 1 turn");
delay(500);

}

if(Turn==7)

202

654. {

655. //bag 7

656. if(digitalRead(buttonPinl) == HIGH)
657. {

658. digitalWrite(PWR1, on);

659. delay(250);

660. Q25val = analogRead(Q1);

661. digitalWrite(PWR1l, off);

662. digitalWrite(PWR2, on);

663. delay(250);

664 . Q26val = analogRead(Q2);

665. digitalWrite(PWR2, off);

666. digitalWrite(PWR3, on);

667. delay(250);

668. Q27val = analogRead(Q3);

669. digitalWrite(PWR3, off);

670. digitalWrite(PWR4, on);

671. delay(250);

672. Q28val = analogRead(Q4);

673. digitalWrite(PWR4, off);

674.

675. Q25diff = Q25val-Q21val;

676. Q26diff = Q26val-Q22val;

677. Q27diff = Q27val-Q23val;

678. Q28diff = Q28val-Q24val;

679.

680. bag7[1] = Q25diff; //bag 7 location
681. bag7[2] = Q26diff;

682. bag7[3] = Q27diff;

683. bag7[4] = Q28diff;

684.

685. if(Q25diff<Q26diff && Q25diff<Q27diff && Q25diff<Q28diff)
686.

687. baglLocation=3;

688. bagsensedonboard = 1;

689. }//end if

690. else if(Q26diff<Q25diff && Q26diff<Q27diff && Q26diff<Q28diff)
691. {

692. bagLocation=4;

693. bagsensedonboard = 1;

694. }//end else if

695. else if(Q27diff<Q25diff && Q27diff<Q26diff && Q27diff<Q28diff)
696. {

697. bagLocation=1;

698. bagsensedonboard = 1;

699. }//end else if

700. else if(Q28diff<Q25diff && Q28diff<Q26diff && Q28diff<Q27diff)
701. {

702. bagLocation=2;

703. bagsensedonboard = 1;

704. }//end else if

705. else

706. {

707. bagsensedonboard = 9;

708. }

709.

710. if (bagsensedonboard == 1)

711. {

712. TeamlScoreCurrent = TeamlScoreCurrent + 1;
713.

714. else if (bagsensedinhole == 1)

715. {

716. TeamlScoreCurrent = TeamlScoreCurrent + 3;
717. }

718.

203

719.
720.
721.
722.
723.
724.

725.

726.

727.

}

728.

729.
730.

731

732.
733.

{

TeamlScoreCurrent = TeamlScoreCurrent+1;
Turn = Turn+l;
Serial.println(bagLocation);
Serial.println(TeamlScoreCurrent);
Serial.println("It is team 2 turn");
delay(500);

if(Turn==8)

. //bag 8

{

734.
735.
736.
737.
738.
739.
740.
741.
742.
743.
744.
745.
746.
747.
748.
749.
750.
751.
752.
753.
754.
755.
756.
757.
758.
759.
760.
761.
762.
763.
764.
765.
766.
767.
768.
769.
770.
771.
772.
773.
774.
775.
776.
777.
778.
779.
780.
781.
782.
783.

if(digitalRead(buttonPin2) == HIGH)

digitalWrite(PWR1, on);
delay(2590);

Q29val = analogRead(Q1);
digitalWrite(PWR1, off);
digitalWrite(PWR2, on);
delay(250);

Q30val = analogRead(Q2);
digitalWrite(PWR2, off);
digitalWrite(PWR3, on);
delay(250);

Q31val = analogRead(Q3);
digitalWrite(PWR3, off);
digitalWrite(PWR4, on);
delay(250);

Q32val = analogRead(Q4);
digitalWrite(PWR4, off);

Q29diff = Q29val-Q25val;
Q30diff = Q3@val-Q26val;
Q31diff = Q31lval-Q27val;
Q32diff = Q32val-Q28val;

bag8[1] = Q29diff; //bag 4 location
bag8[2] = Q30diff;
bag8[3] = Q31diff;
bag8[4] = Q32diff;

1f(Q29diff<Q30diff && Q29diff<Q31diff && Q29diff<Q32diff)

bagLocation=3;

bagsensedonboard = 1;
}//end if
else if(Q30diff<Q29diff && Q30diff<Q31diff && Q30diff<Q32diff)
{

bagLocation=4;

bagsensedonboard = 1;
}//end else if
else if(Q31diff<Q29diff && Q31diff<Q30diff && Q31diff<Q32diff)
{

bagLocation=1;

bagsensedonboard = 1;
}//end else if
else if(Q32diff<Q29diff && Q32diff<Q30diff && Q32diff<Q31diff)
{

baglLocation=2;

bagsensedonboard = 1;
}//end else if
else
{
bagsensedonboard = 0;

204

784. }

785.

786. if (bagsensedonboard == 1)

787. {

788. Team2ScoreCurrent = Team2ScoreCurrent + 1;
789.

790. else if (bagsensedinhole == 1)

791. {

792. Team2ScoreCurrent = Team2ScoreCurrent + 3;
793. }

794.

795. // round = round + 1;

796. Serial.println(baglLocation);

797. Serial.println(Team2ScoreCurrent);

798. Serial.println("End of round");

799. delay(500);

800.

801. }

802. pointcalculation();

803.

804. if(Turn==8)

805. {

806. //bag 7

807. if(digitalRead(buttonPinl) == HIGH)

808. {

809. Serial.print("Red teams score is "); Serial.println(TeamlScore);
810. Serial.print("Blue teams score is "); Serial.println(Team2Score);
811.

812. scoreboard(TeamlScore, Team2Score, &FreeMonoBold24pt7b);
813. scoreboardNumbers(TeamlScore, Team2Score, &FreeMonoBold24pt7b);
814.

815. endgame();

816.

817. Turn = 1;

818. Serial.print(Turn);

819. }

820.

821. }

822. }

823. }

824.

Appendix K: Button Test

1. /* 3k 3k >k 3k 5k >k 3k sk >k 3k 5k 3k 3k 5k >k 5k ok 3k 5k ok >k 3k 5k 3k 5k >k 3k 5k >k 3k sk >k 3k 5k >k sk 5k 3k 5k ok 3k 5k >k 3k sk ok 3k 5k ok 3k 5k >k 3k sk >k sk k sk kok >k

2. Cornhole Board Button Test

3. Summary:

4. This code turns on and off the built-in LED when the button is pushed.
5. Date: 11/25/23

6. Name: Tim Desser

7. 3k 3k 3k 3k 5k 3k sk >k 3k 5k >k 3k sk >k 5k ok 3k sk sk 3k sk >k >k 3k ok 3k sk ok 3k sk >k 3k sk >k 3k sk >k 3k sk 3k sk >k 3k sk >k 3k ok >k 3k sk >k >k sk >k 3k ok >k sk ok kok ok */

8. const int buttonPin = 33; // the number of the pushbutton pin

9. const int ledPin = 2; // the number of the built-in LED pin

1o.

11. // variables will change:
12. int buttonState = ©; // variable for reading the pushbutton status

14. void setup() {
15. // initialize the LED pin as an output:
16. pinMode(ledPin, OUTPUT);

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

// initialize the pushbutton pin as an input:
pinMode (buttonPin, INPUT);

}

void loop() {
// read the state of the pushbutton value:
buttonState = digitalRead(buttonPin);

// check if the pushbutton is pressed. If it is, the buttonState is HIGH:

if (buttonState == HIGH) {
// turn LED on:
digitalWrite(ledPin, HIGH);
} else {
// turn LED off:
digitalWrite(ledPin, LOW);
¥
b

205

Appendix L: Single Color Sensor Test

VWoONOUTEA WNBR

/* 3k 3k >k 3k sk >k 3k sk >k 3k sk sk sk ok 3k sk ok 3k sk sk >k sk sk 3k sk ok 3k sk >k 3k sk sk 3k sk >k sk sk 3k sk ok 3k sk >k 3k sk ok 3k sk ok 3k sk >k sk sk >k 3k ok >k k ok >k

Color Sensor Single Test

Summary:

Uses MUX to find one color sensors
Date: 11/21/23

Name: Tim Desser
3 3k 3k 3k 3k 3k >k 3k 5k >k 3k 5k >k 3k 5k >k 5k >k 3k 5k >k >k 5k 5k >k 5k >k 3k 5k %k >k 5k %k 3k 5k >k 3k 5k >k 5k 5k 3k 5k >k >k 5k %k 3k 5k >k >k 5k %k %k 5k %k %k >k k kK k */

#include <Wire.h>

. #include <PWFusion_TCA9548A.h>
. #include "Adafruit_TCS34725.h"
. #include <math.h>

. // global variables

//color sensors
TCA9548A i2cMux;
Adafruit_TCS34725 tcs;//8-bit var
uintl6_t red, green, blue, clear;//16-bit var

. void setup()

// Initialize I2C and Serial
Serial.begin(9600);// begin comms. with serial monitor
delay(5000);

Serial'println("**");
Wire.begin();

// contact/calibrate color sensors
// hole sensors
i2cMux.begin(0X72);
Serial.println("For Q3 MUX:");
i2cMux.setChannel (CHAN®) ;
delay(500);

tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);

Serial.println();
if (tcs.begin()) {

41. Serial.println("sensor @ found");

42. } else {

43, Serial.println("No TCS34725 found for sensor 0");
44. }

45, tcs.getRawData(&red, &green, &blue, &clear);
46. Serial.println("setup");
47. Serial.print("red=");
48. Serial.println(red);

49. Serial.print("green=");
50. Serial.println(green);
51. Serial.print("blue=");
52. Serial.println(blue);
53. Serial.print("white=");
54. Serial.println(clear);
55. delay(5000);

56.
57. i2cMux. setChannel (CHAN_NONE);
58. //Wire.endTransmission();

59. Wire.end();
60. }//end void setup
61. void loop(){

62.

63. Wire.begin();

64. // contact/calibrate color sensors
65. // hole sensors

66. i2cMux.begin(0X72);

67.

68. // contact/calibrate color sensors
69. // hole sensors

70.

71. Serial.println("For Q3 MUX:");

72. i2cMux.setChannel (CHAN1);

73. tcs=Adafruit_TCS34725(TCS34725_ INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
74.

75. if (tcs.begin()) {

76. Serial.println("sensor 1 found");

77. } else {

78. Serial.println("No TCS34725 found for sensor 1");
79. }

80. tcs.getRawData(&red, &green, &blue, &clear);
81. Serial.print("red=");
82. Serial.println(red);
83. Serial.print("green=");
84. Serial.println(green);
85. Serial.print("blue=");
86. Serial.println(blue);
87. Serial.print("white=");
88. Serial.println(clear);
89. Serial.println();

90. delay(5000);

91.

92.

93. }

94.

206

Appendix M: Multiple Color Sensors Test

/* 2k sk sk ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok

Color Sensor Find Test

Summary:

Uses MUX to find all color sensors
Date: 11/21/23

Name: Tim Desser
3k >k ok 3k >k sk sk >k ok 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk ok sk sk sk sk sk ok sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk skok sk */

NoubhwNneR

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.

. #include <Wire.h>
10.

#include <PWFusion_TCA9548A.h>
#include "Adafruit TCS34725.h"
#include <math.h>

//pressure sensor pins
#define Qh 0x70
#define Q1 ox71
#define Q2 0x72
#define Q3 0x73
#define Q4 0x74

// global variables

//color sensors
TCA9548A i2cMux;
Adafruit_TCS34725 tcs;//8-bit var
uintl6_t red, green, blue, clear;//16-bit var

void setup()

{

// Initialize I2C and Serial
Serial.begin(9600);// begin comms. with serial monitor

Serial. pr\intln("3k ok ok 3k ok ok 3k ok 3k ok ok ok ok ok 3k 3k ok sk ok ok ok ok sk ok ok ok ok ok sk ok ok sk ckosk skockkok ok ok),

Wire.begin();

delay(5000);

//hole MUX off
i2cMux.begin(0x70);
i2cMux.setChannel (CHAN_NONE);
//Q1 MUX off
i2cMux.begin(0x71);
i2cMux.setChannel (CHAN_NONE);
//Q2 MUX off
i2cMux.begin(0x72);
i2cMux.setChannel (CHAN_NONE);
//Q3 MUX off
i2cMux.begin(0x73);
i2cMux.setChannel (CHAN_NONE);
//Q4 MUX off
i2cMux.begin(0x74);
i2cMux.setChannel (CHAN_NONE);

// contact/calibrate color sensors

// hole sensors
i2cMux.begin(0x70);
Serial.println("For Hole MUX:");
i2cMux.setChannel (CHAN®) ;

tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);

Serial.println("\n");

if (tcs.begin()) {
Serial.println("sensor @ found");

} else {

Serial.println("No TCS34725 color sensor found for sensor 0");

}
i2cMux.setChannel (CHAN1);

tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);

if (tcs.begin()) {
Serial.println("sensor 1 found");
} else {

Serial.println("No TCS34725 color sensor found for sensor 1");

}
i2cMux.setChannel (CHAN?);

tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);

207

73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
lo1.
102.
103.
104.
105.
106.
107.
108.
109.
11e.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.

if (tcs.begin()) {
Serial.println("sensor 7 found");
} else {

Serial.println("No TCS34725 found color sensor found for sensor 7");

by
// //end hole MUX

// //change to Q1 Mux
i2cMux. setChannel (CHAN_NONE);
i2cMux.begin(Ql);
Serial.println("For Q1 MUX:");

i2cMux.setChannel (CHAN®) ;

tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);

if (tcs.begin()) {
Serial.println("sensor @ found");
} else {

Serial.println("No TCS34725 color sensor found for sensor 0");

}
i2cMux.setChannel (CHAN1);

tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);

if (tcs.begin()) {
Serial.println("sensor 1 found");
} else {

b
i2cMux.setChannel (CHAN2);

Serial.println("No TCS34725 color sensor found for sensor 1");

tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);

if (tcs.begin()) {
Serial.println("sensor 2 found");
} else {

Serial.println("No TCS34725 color sensor found for sensor 2");

¥
i2cMux.setChannel (CHAN3);

tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);

if (tcs.begin()) {
Serial.println("sensor 3 found");
} else {

}
i2cMux.setChannel (CHAN4);

Serial.println("No TCS34725 color sensor found for sensor 3");

tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);

if (tcs.begin()) {
Serial.println("sensor 4 found");
} else {

b
i2cMux.setChannel (CHANS) ;

Serial.println("No TCS34725 color sensor found for sensor 4");

tcs=Adafruit_TCS34725(TCS34725 INTEGRATIONTIME_614MS, TCS34725 GAIN_6€X);

if (tcs.begin()) {
Serial.println("sensor 5 found");
} else {

Serial.println("No TCS34725 color sensor found for sensor 5");

¥
i2cMux.setChannel (CHANG) ;

tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);

if (tcs.begin()) {
Serial.println("sensor 6 found");
} else {

Serial.println("No TCS34725 color sensor found for sensor 6");

}
i2cMux.setChannel (CHAN7);

tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);

if (tcs.begin()) {
Serial.println("sensor 7 found");

208

138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.

} else {
Serial.println("No TCS34725 color sensor found for

i2cMux. setChannel (CHAN_NONE);
//end Q1 MUX

//change to Q2 Mux
i2cMux.setChannel (CHAN_NONE);
i2cMux.begin(Q2);
Serial.println("For Q2 MUX:");

i2cMux.setChannel (CHAN®) ;

tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);

if (tcs.begin()) {
Serial.println("sensor @ found");
} else {

sensor 7");

Serial.println("No TCS34725 color sensor found for sensor 0");

}
i2cMux.setChannel (CHAN1);

tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);

if (tcs.begin()) {
Serial.println("sensor 1 found");
} else {

Serial.println("No TCS34725 color sensor found for sensor 1");

}
i2cMux.setChannel (CHAN2);

tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);

if (tcs.begin()) {
Serial.println("sensor 2 found");
} else {

Serial.println("No TCS34725 color sensor found for sensor 2");

¥
i2cMux.setChannel (CHAN3);

tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);

if (tcs.begin()) {
Serial.println("sensor 3 found");
} else {

Serial.println("No TCS34725 color sensor found for sensor 3");

}
i2cMux.setChannel (CHAN4);

tcs=Adafruit_TCS34725(TCS34725 INTEGRATIONTIME_614MS, TCS34725 GAIN_66X);

if (tcs.begin()) {
Serial.println("sensor 4 found");
} else {

Serial.println("No TCS34725 color sensor found for sensor 4");

¥
i2cMux.setChannel (CHANS) ;

tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);

if (tcs.begin()) {
Serial.println("sensor 5 found");
} else {

Serial.println("No TCS34725 color sensor found for sensor 5");

¥
i2cMux.setChannel (CHANG) ;

tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);

if (tcs.begin()) {
Serial.println("sensor 6 found");
} else {

Serial.println("No TCS34725 color sensor found for sensor 6");

¥
i2cMux.setChannel (CHAN?);

tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);

if (tcs.begin()) {
Serial.println("sensor 7 found");
} else {

209

203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244
245,
246.
247.
248.
249,
250.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.

Serial.println("No TCS34725 color sensor found for sensor 7");
}
i2cMux.setChannel (CHAN_NONE);
//end Q2 MUX

//change to Q3 Mux

i2cMux. setChannel (CHAN_NONE) ;
i2cMux.begin(0x73);
Serial.println("For Q3 MUX:");

i2cMux.setChannel (CHAN®) ;
tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
if (tcs.begin()) {
Serial.println("sensor @ found");
} else {
Serial.println("No TCS34725 color sensor found for sensor 0");
}
i2cMux.setChannel (CHAN1);
tcs=Adafruit_TCS34725(TCS34725_ INTEGRATIONTIME_614MS, TCS34725 GAIN_60X);
if (tcs.begin()) {
Serial.println("sensor 1 found");
} else {
Serial.println("No TCS34725 color sensor found for sensor 1");
}
i2cMux.setChannel (CHAN2);
tcs=Adafruit_TCS34725(TCS34725_ INTEGRATIONTIME_614MS, TCS34725 GAIN_60X);
if (tcs.begin()) {
Serial.println("sensor 2 found");
} else {
Serial.println("No TCS34725 color sensor found for sensor 2");
}
i2cMux.setChannel (CHAN3);
tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
if (tcs.begin()) {
Serial.println("sensor 3 found");
} else {
Serial.println("No TCS34725 color sensor found for sensor 3");
}

i2cMux.setChannel(CHAN4) ;
tcs=Adafruit_TCS34725(TCS34725 INTEGRATIONTIME_614MS, TCS34725 GAIN_60X);
if (tcs.begin()) {
Serial.println("sensor 4 found");
} else {
Serial.println("No TCS34725 color sensor found for sensor 4");
}

i2cMux.setChannel (CHANS) ;
tcs=Adafruit_TCS34725(TCS34725 INTEGRATIONTIME_614MS, TCS34725 GAIN_60X);
if (tcs.begin()) {

Serial.println("sensor 5 found");
} else {

Serial.println("No TCS34725 color sensor found for sensor 5");
¥

i2cMux.setChannel (CHANG) ;
tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
if (tcs.begin()) {

Serial.println("sensor 6 found");
} else {

Serial.println("No TCS34725 color sensor found for sensor 6");
¥

i2cMux.setChannel (CHAN7);
tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);
if (tcs.begin()) {

Serial.println("sensor 7 found");
} else {

Serial.println("No TCS34725 color sensor found for sensor 7");

210

268.
269.
270.
271.
272.
273.
274.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
31e.
311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.
323.
324.
325.
326.
327.
328.
329.
330.
331.
332.

}
i2cMux. setChannel (CHAN_NONE);

end Q3 MUX

//change to Q4 Mux
i2cMux. setChannel (CHAN_NONE);
i2cMux.begin(Q4);
Serial.println("For Q4 MUX:");

i2cMux.setChannel (CHAN®) ;

tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);

if (tcs.begin()) {
Serial.println("sensor @ found");
} else {

Serial.println("No TCS34725 color sensor found for sensor 0");

}
i2cMux.setChannel (CHAN1);

tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);

if (tcs.begin()) {
Serial.println("sensor 1 found");
} else {

b
i2cMux.setChannel (CHAN2) ;

Serial.println("No TCS34725 color sensor found for sensor 1");

tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);

if (tcs.begin()) {
Serial.println("sensor 2 found");
} else {

b
i2cMux.setChannel (CHAN3);

Serial.println("No TCS34725 color sensor found for sensor 2");

tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);

if (tcs.begin()) {
Serial.println("sensor 3 found");
} else {

Serial.println("No TCS34725 color sensor found for sensor 3");

}
i2cMux.setChannel(CHAN4);

tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);

if (tcs.begin()) {
Serial.println("sensor 4 found");
} else {

Serial.println("No TCS34725 color sensor found for sensor 4");

¥
i2cMux.setChannel (CHANS) ;

tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);

if (tcs.begin()) {
Serial.println("sensor 5 found");
} else {

}
i2cMux.setChannel (CHANG) ;

Serial.println("No TCS34725 color sensor found for sensor 5");

tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);

if (tcs.begin()) {
Serial.println("sensor 6 found");
} else {

}
i2cMux.setChannel (CHAN?);

Serial.println("No TCS34725 color sensor found for sensor 6");

tcs=Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_614MS, TCS34725_GAIN_60X);

if (tcs.begin()) {
Serial.println("sensor 7 found");
} else {

Serial.println("No TCS34725 color sensor found for sensor 7");

}

211

333. i2cMux. setChannel (CHAN_NONE);
334. //end Q4 MUX

335.

336. i2cMux. setChannel (CHAN_NONE);
337. //Wire.endTransmission();
338. Wire.end();

339. }//end void setup
340. void loop(){}
341.

342.

212

Appendix N: Pressure Sensors Test

// Pressure sensor testing

#include <Wire.h>

#include <PWFusion_TCA9548A.h>

#include "Adafruit_TCS34725.h"

#include <math.h>

#include <esp_now.h>

#include <WiFi.h>

#tinclude <esp wifi.h> // only for esp _wifi_set_channel()
10. #include <GXEPD.h>

11. #include <GXGDEW@42T2/GXGDEWO42T2.h> // 4.2" b/w
12. #include <Fonts/FreeMonoBold24pt7b.h>

13. #include <GxIO/GxIO_SPI/GxIO_SPI.h>

14. #include <GxIO/GxIO.h>

VWoONOUTEA WN R

16. // Global copy of slave
17. esp_now_peer_info_t slave;
18. #define CHANNEL 1

19. #define PRINTSCANRESULTS ©
20. #define DELETEBEFOREPAIR ©

22. //pressure sensor pins
23. #define Q1 26
24. #define Q2 27
25. #define Q3 14
26. #define Q4 12

28. #define PWR1 39

29. #define PWR2 34

30. #define PWR3 35

31. #define PWR4 32

32. #define on HIGH

33. #define off LOW

34. int Qlzero; int Q2zero; int Q3zero; int Q4zero;
35. int Qlval; int Q2val; int Q3val; int Q4val;

36. int Q1diff; int Q2diff; int Q3diff; int Q4diff; int bagl[4];
37. int p1, p2, p3, p4;

38. int TeamlScore = 9;

39. int Team2Score = 9;

40. int TeamlScoreCurrent = 0;

41. int Team2ScoreCurrent = 0;

42. const int buttonPinl = 13;

43. const int buttonPin2 = 33;

44.
45. void setup() {
46. // put your setup code here, to run once:

47. Serial.begin(9600);// begin comms. with serial monitor

213

48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.

64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.

l1e1.

102.

103.

104.

105.

106.

107.

108.

109.

11e0.

111.

112.

Serial. pr\intln("**"))

analogReadResolution(12);
//pressure sensor read
Serial.println("Clear the board for calibration.");
delay(5000);
//QUAD 1
Qlval=analogRead(Q1l);
//QUAD 2
Q2val=analogRead(Q2);
//QUAD 3
Q3val=analogRead(Q3);
//QUAD 4
Q4val=analogRead(Q4);
//ensure all feet have contact
while(1l)//calibration loop

if(Qlval>minval)
{
Serial.print("Add shim to foot in Quad 1.");
while(1)
{
Qlval=analogRead(Q1l);
if(Qlval<minVal){break;}
}//wait for user adjustment
}//end if
else{pl=1;}
if(Q2val>minval)
{
Serial.print("Add shim to foot in Quad 2.");
while(1)
{
Q2val=analogRead(Q2);
if(Q2val<minval){break;}
}//wait for user adjustment
}Y//end if
else{p2=1;}
if(Q3val>minval)
{
Serial.print("Add shim to foot in Quad 3.");
while(1)

Q3val=analogRead(Q3);
if(Q3val<minval){break;}
}//wait for user adjustment
}//end if
else{p3=1;}
if(Q4val>minval)
{
Serial.print("Add shim to foot in Quad 4.");
while(1)
{
Q4val=analogRead(Q4);
if(Q4val<minval){break;}
}//wait for user adjustment
}//end if
else{p4=1;}

if((pl+p2+p3+p4)==4){break;}//leave calibration loop

}//end calibration loop
Serial.println("out of loop");
//calibrate zeros
Qlzero=Q1lval;

Q2zero=Q2val;

Q3zero=Q3val;

214

113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
17e.
171.
172.
173.
174.
175.
176.
177.

Q4zero=Q4val;

Serial.println(Qizero);
Serial.println(Q2zero);
Serial.println(Q3zero);
Serial.println(Q4zero);

// Set button pins as inputs

pinMode(buttonPinl, INPUT);

pinMode (buttonPin2, INPUT);
}

void loop() {
// put your main code here, to run repeatedly:
if(Turn==1)
{
//bag 1
if (digitalRead(buttonPinl) == HIGH)
{
digitalWrite(PWR1, on);
delay(250);
Qlval = analogRead(Q1);
digitalWrite(PWR1, off);
digitalWrite(PWR2, on);
delay(250);
Q2val = analogRead(Q2);
digitalWrite(PWR2, off);
digitalWrite(PWR3, on);
delay(250);
Q3val = analogRead(Q3);
digitalWrite(PWR3, off);
digitalWrite(PWR4, on);
delay(250);
Q4val = analogRead(Q4);
digitalWrite(PWR4, off);

Q1diff = Qlval-Qlzero;
Q2diff = Q2val-Q2zero;
Q3diff = Q3val-Q3zero;

Q4diff = Q4val-Q4zero;

bagl[1] = Q1diff; //bag 1 location

bagl[2] = Q2diff;
bagl[3] = Q3diff;
bagl[4] = Q4diff;

if(Qldiff<Q2diff && Q1diff<Q3diff && Q1diff<Q4diff)
{
bagLocation=3;
bagsensedonboard = 1;
// Turn on quad 3 color sensor mux
}Y//end if
else if(Q2diff<Qldiff && Q2diff<Q3diff && Q2diff<Q4diff)
{
baglLocation=4;
bagsensedonboard = 1;
// Turn on quad 4 color sensor mux
}//end else if
else if(Q3diff<Qldiff && Q3diff<Q2diff && Q3diff<Q4diff)
{
bagLocation=1;
bagsensedonboard = 1;
// Turn on quad 1 color sensor mux
}//end else if
else if(Q4diff<Qldiff && Q4diff<Q2diff && Q4diff<Q3diff)

215

178. {

179. bagLocation=2;

180. bagsensedonboard = 1;

181. // Turn on quad 2 color sensor mux
182. }//end else if

183. else

184. {

185. bagsensedonboard = 0;

186. }

187.

188. if (bagsensedonboard == 1)

189. {

190. TeamlScoreCurrent = TeamlScoreCurrent + 1;
191. }

192. else if (bagsensedinhole == 1)

193. {

194. TeamlScoreCurrent = TeamlScoreCurrent + 3;
195. }

196.

197. Serial.println(Qidiff);

198. Serial.println(Q2diff);

199. Serial.println(Q3diff);

200. Serial.println(Q4diff);

201. }

202.

Appendix O: LED On/Off Test

/* 3k 3k >k 3k sk >k 3k sk >k 3k sk >k sk sk 3k sk ok 3k sk sk sk sk sk 3k sk ok 3k sk >k 3k sk sk 3k sk sk sk sk 3k sk ok 3k sk >k 3k sk ok 3k sk ok 3k sk >k sk sk >k 3k ok >k k ok >k

Cornhole Board LED on/off Test

Summary:

This code turns on and off the LED back lights.
Date: 11/25/23

Name: Tim Desser
3k 3k 3k 3k 3k >k 3k 3k 3k 3k >k >k 3k >k 3k sk 3k >k sk 3k 3k Sk >k sk 3k >k 3k 3k >k sk sk >k sk 3k >k sk 3k 3k 3k 3k >k sk 3k 3k sk 3k >k sk >k ok sk >k sk sk >k ok sk kok sk k ok */

VWoONOUTEA WN R

. #define on HIGH
10. #define off LOW
11. void setup() {

13. pinMode(LED, OUTPUT);
14. }

17. void loop() {

18. digitalWrite(LED, on);
19. delay(5000);

20. digitalWrite(LED, off);
21. delay(1000);

22. }

23.

Appendix P: LED PWM Test

/* 3k ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok

Cornhole Board LED

Summary:

This code controls the LED lights on the cornhole board using a PWM signal.
Date: 11/25/23

uh WwWwNR

27.

30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.

44

Name: Tim Desser

3k 3k 3k 3k sk ok sk ok sk ok sk sk sk sk sk sk sk Sk sk sk sk sk Sk Sk Sk Sk sk Sk sk Sk sk Sk sk Sk sk Sk sk Sk sk Sk sk sk sk sk sk sk sk skosk sk sk sk sk sk k sk sk k sk sk k ok */
#include "ESP32_FastPWM.h"

t#tdefine LED 15

. int PWM_resolution = 12;
. //creates pwm instance
. ESP32_FAST_PWM* PWM_Instance;

. float frequency = 1000.0f;
. float dutyCycle = 0.0f;

. int del = 20;

. uint8_t channel = 0;

. void setup()

- A

//assigns PWM frequency of 1.0 KHz and a duty cycle of 0%, channel @, 12-bit resolution
PWM_Instance = new ESP32_FAST_PWM(LED, frequency, dutyCycle, channel, PWM_resolution);

}

. void loop()
{

for(int 1=0;1i<100;i++)

{
PWM_Instance->setPWM(LED, frequency, i);
delay(del);

b

for(int i1=100;i>0;i--)

{
PWM_Instance->setPWM(LED, frequency, i);
delay(del);

¥

// PWM_Instance->setPWM(LED, frequency, 990);
// delay(del);
// PWM_Instance->setPWM(LED, frequency, 10);
// delay(del);

}

216

Appendix Q: Solenoid Test

VWoONOOTUTE WN R

/* 3k ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok

Cornhole Board Solenoid Test

Summary:

This code controls the solenoid for the hole door.

Date: 11/25/23

Name: Tim Desser

3k 3k 3k sk 3k sk 3k 3k sk sk 3k sk sk sk sk sk sk sk sk 3k sk ok sk sk ok sk sk ok skoskosk sk kok */
#define sol 2

t#tdefine on HIGH

. #define off LOW
. void setup() {

pinMode(sol, OUTPUT);
}

. void loop() {
18.
19.
20.
21.
22.

digitalWrite(sol, on);
delay(250);
digitalWrite(sol, off);
delay(10000);

}

|23.

217

Appendix R: Display Test

ONOOUVTHA WN R

VUV UVTUVUVTUDSDADDDODADRNRADRDWWWWWWWWWWRNNNNNNNNNNRRERRRERRERRERR
OUVDWNROOVLONNIOIDUITDERWNROOVUONAUVTRWNROOVONOUBRWNRPOWOVUONGOAUDAWNER® WO

57.

59.
60.

/* 3k 3k >k 3k 5k >k 3k sk >k 3k sk >k 3k sk 3k sk ok 3k sk ok >k sk sk 3k sk ok 3k sk >k 3k sk >k 3k sk >k 3k ok 3k sk ok 3k sk >k 3k sk ok >k sk ok 3k 5k >k k sk >k 3k xk >k ok k k.

Cornhole Board display Test

Summary:

This code displays two different fonts and creates dividing lines.

Date: 11/25/23

Name: Tim Desser

3k 3k 3k 3k 3k 3k 5k 3k 3k 5k >k 3k 5k >k 3k 5k 3k 3k 3k 3k 3k >k >k 3k >k 3k 3k 3k 3k 5k >k 3k 5k >k 3k 5k >k %k >k 3k 3k >k 3k 5k >k 3k 5k >k 3k 3k >k >k 5k >k 3k >k >k kok k ok ok */

//** First, install the GxEPD libray and move custom fonts to the fonts folder.
#include <GXEPD.h>

. #include <GXGDEW@42T2/GXGDEW@42T2.h> // 4.2" b/w
. #include <Fonts/Nokora_Bold_100.h>

. #include <Fonts/FreeMonoBold24pt7b.h>

. #include <GxIO/GxIO_SPI/GxIO_SPI.h>

. #include <GxIO/GxIO.h>

. GxIO_Class io(SPI, /*CS=5*/ SS, /*DC=*/ 17, /*RST=*/ 16); // arbitrary selection of 17, 16
. GXEPD_Class display(io, /*RST=*/ 16, /*BUSY=*/ 4); // arbitrary selection of (16), 4
. int RedScore=5;

. int BlueScore=9;

. void setup()

Serial.begin(115200);

Serial.println();

Serial.println("setup");

display.init(115200); // enable diagnostic output on Serial
Serial.println("setup done");

-}

. void loop()

scoreboard(RedScore, BlueScore, &FreeMonoBold24pt7b);
scoreboardNumbers (RedScore, BlueScore, &Nokora_Bold 1090);
delay(30000);

RedScore++;

BlueScore++;

-}

. void scoreboard(int redScore, int blueScore , const GFXfont* f)

- A

display.fillScreen(GxXEPD_WHITE);
display.setTextColor(GxEPD_BLACK);
display.setFont(f);
display.setCursor(5, 60);
display.print("CORNHOLE");
display.setCursor(30, 130);
display.print("RED");
display.setCursor(240, 130);
display.print("BLUE");

// draw lines
display.fillRect(@, 70, 400, 4, GXEPD_BLACK);
display.fillRect(198, 70, 4, 230, GXEPD_BLACK);

-}

void scoreboardNumbers(int redScore, int blueScore , const GFXfont* f)

58. {

//display.fillScreen(GXEPD_WHITE);
//display.setTextColor(GXEPD_BLACK);

61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.

display.setFont(f);
// display.setCursor(5, 60);
// display.print("CORNHOLE");
// display.setCursor(30, 130);
// display.print("RED");
// display.setCursor(210, 130);
// display.print("BLUE");
if(redScore<=9){

display.setCursor(70, 250);}//end if
elseq{

display.setCursor(50, 250);}//end else
display.print(redScore);
if(blueScore<=9){

display.setCursor(270, 250);}//end if
elseq{

display.setCursor (250, 250);}//end else
display.print(blueScore);

display.update();
//delay(1000);

218

