001484194 000__ 07083cam\\22006017i\4500 001484194 001__ 1484194 001484194 003__ OCoLC 001484194 005__ 20240117003316.0 001484194 006__ m\\\\\o\\d\\\\\\\\ 001484194 007__ cr\cn\nnnunnun 001484194 008__ 231118s2023\\\\si\a\\\\ob\\\\001\0\eng\d 001484194 019__ $$a1409639603 001484194 020__ $$a9789819918706$$qelectronic book 001484194 020__ $$a9819918707$$qelectronic book 001484194 020__ $$z9819918693 001484194 020__ $$z9789819918690 001484194 0247_ $$a10.1007/978-981-99-1870-6$$2doi 001484194 035__ $$aSP(OCoLC)1409708314 001484194 040__ $$aEBLCP$$beng$$erda$$cEBLCP$$dYDX$$dGW5XE$$dOCLCO$$dYDX 001484194 049__ $$aISEA 001484194 050_4 $$aQ295$$b.S84 2023 001484194 08204 $$a003$$223/eng/20231122 001484194 1001_ $$aSugiyama, Yuki. 001484194 24510 $$aDynamics of asymmetric dissipative systems :$$bfrom traffic jam to collective motion /$$cYuki Sugiyama. 001484194 264_1 $$aSingapore :$$bSpringer,$$c2023. 001484194 300__ $$a1 online resource (xviii, 316 pages) :$$billustrations. 001484194 336__ $$atext$$btxt$$2rdacontent 001484194 337__ $$acomputer$$bc$$2rdamedia 001484194 338__ $$aonline resource$$bcr$$2rdacarrier 001484194 4901_ $$aSpringer Series in Synergetics Series 001484194 504__ $$aIncludes bibliographical references and index. 001484194 5058_ $$aIntro -- Preface -- Acknowledgment -- Contents -- Part I Basics of ADS and OV Models -- 1 Introduction to Asymmetric Dissipative Systems (ADS) -- 1.1 Background of ADS -- 1.1.1 Motivation -- Basic Assumptions and Prospects -- Non-equilibrium Dissipative Systems -- Physical Properties in Emergence of Non-equilibrium Macroscopic Phenomena -- 1.1.2 Asymmetric Interactions in Dissipative System -- Non-conservation of Momentum -- Energy Flow Through a System and Non-equilibrium Stationary State -- 1.2 Minimal Model of ADS -- 1.2.1 Introducing the Optimal Velocity Model 001484194 5058_ $$a1.2.2 Non-existence of Lagrangian -- 1.2.3 Examples of Phenomena Described by OV Model -- 1.3 ADS as a System of Active Matter -- 1.3.1 A Brief Review of Vicsek Model -- Statistical Properties of Collective Motions -- 1.3.2 Comparing OV Model with Vicsek Model -- Flocking Behaviours -- Emergence of Solitary Objects -- Macroscopic Approach and Statistical Properties -- 1.3.3 Importance of Asymmetry for Interactions in Flocking Behaviours -- 1.4 Overview of the Book -- 2 Optimal Velocity Model (OV Model) -- 2.1 Model -- 2.1.1 Single and Collective Motions 001484194 5058_ $$a2.2 Homogeneous Flow Solution and its Stability -- 2.2.1 Linear Stability Analysis and Phase Transition -- 2.2.2 Dispersion Relation -- 2.3 Emergence of Instability Originating from Asymmetry -- 2.3.1 General OV Model -- 2.3.2 Linear Stability of General OV Model -- 2.3.3 Dispersion Relation for General OV Model -- Coupled Oscillators with Viscous Force -- Equivalence to Harmonic Oscillator System -- Asymmetric Interaction without Dissipation -- 2.3.4 Particle Number Dependence in Linear Stability -- 2.4 Continuum System of OV Model -- 2.4.1 Continuation of Discrete System 001484194 5058_ $$a2.4.2 Linear Stability Analysis -- Note for Continuation of Asymmetry -- 2.4.3 Continuum System of General OV Model -- 2.5 Stability Change as Hopf Bifurcation -- 2.5.1 Hopf Bifurcation in Many-Particle System -- 2.5.2 Hopf Bifurcation Originating from Asymmetry -- 3 Cluster Flow Solutions -- 3.1 Moving Cluster -- 3.1.1 Spontaneous Emergence of a Moving Cluster -- 3.1.2 Non-equilibrium Stability of a Moving Cluster -- Characteristic Time Interval -- 3.1.3 Profile of Cluster Flow Solution -- Hysteresis Loop -- Limit Cycle -- 3.1.4 Velocity of Moving Cluster 001484194 5058_ $$a3.1.5 Statistical Properties of Cluster Flow -- Distributions of Wave Numbers -- Power Law Distributions for Sizes of Moving Clusters -- 3.2 Heaviside Step Function OV Model (Exactly Solvable Model 1) -- 3.2.1 Homogeneous Flow Solutions -- Linear Stability Analysis -- 3.2.2 Construction of Cluster Flow Solution -- Process of Escaping from a Cluster to a Fast Running Region -- Process of Moving from a Fast Running Region to a Cluster -- 3.2.3 Exact Solutions of Cluster Flow -- Induced Time Scale (Characteristic Time Interval) -- Velocity of Moving Cluster -- Hysteresis Loop and Limit Cycle -- Process of Escaping from a Cluster to a Fast Running Region 001484194 506__ $$aAccess limited to authorized users. 001484194 520__ $$aThis book provides the dynamics of non-equilibrium dissipative systems with asymmetric interactions (Asymmetric Dissipative System; ADS). Asymmetric interaction breaks "the law of action and reaction" in mechanics, and results in non-conservation of the total momentum and energy. In such many-particle systems, the inflow of energy is provided and the energy flows out as dissipation. The emergences of non-trivial macroscopic phenomena occur in the non-equilibrium energy balance owing to the effect of collective motions as phase transitions and bifurcations. ADS are applied to the systems of self-driven interacting particles such as traffic and granular flows, pedestrians and evacuations, and collective movement of living systems. The fundamental aspects of dynamics in ADS are completely presented by a minimal mathematical model, the Optimal Velocity (OV) Model. Using that model, the basics of mathematical and physical mechanisms of ADS are described analytically with exact results. The application of 1-dimensional motions is presented for traffic jam formation. The mathematical theory is compared with empirical data of experiments and observations on highways. In 2-dimensional motion pattern formations of granular media, pedestrians, and group formations of organisms are described. The common characteristics of emerged moving objects are a variety of patterns, flexible deformations, and rapid response against stimulus. Self-organization and adaptation in group formations and control of group motions are shown in examples. Another OV Model formulated by a delay differential equation is provided with exact solutions using elliptic functions. The relations to soliton systems are described. Moreover, several topics in ADS are presented such as the similarity between the spatiotemporal patterns, violation of fluctuation dissipation relation, and a thermodynamic function for governing the phase transition in non-equilibrium stationary states. 001484194 650_0 $$aSystem theory$$xMathematical models. 001484194 650_0 $$aDynamics$$xMathematical models. 001484194 650_6 $$aThéorie des systèmes$$xModèles mathématiques. 001484194 650_6 $$aDynamique$$xModèles mathématiques. 001484194 655_0 $$aElectronic books. 001484194 77608 $$iPrint version:$$aSugiyama, Yuki$$tDynamics of Asymmetric Dissipative Systems$$dSingapore : Springer Singapore Pte. Limited,c2023$$z9789819918690 001484194 830_0 $$aSpringer series in synergetics (Unnumbered) 001484194 852__ $$bebk 001484194 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-981-99-1870-6$$zOnline Access$$91397441.1 001484194 909CO $$ooai:library.usi.edu:1484194$$pGLOBAL_SET 001484194 980__ $$aBIB 001484194 980__ $$aEBOOK 001484194 982__ $$aEbook 001484194 983__ $$aOnline 001484194 994__ $$a92$$bISE