001484361 000__ 06280cam\\2200661\i\4500 001484361 001__ 1484361 001484361 003__ OCoLC 001484361 005__ 20240117003322.0 001484361 006__ m\\\\\o\\d\\\\\\\\ 001484361 007__ cr\cn\nnnunnun 001484361 008__ 231128s2023\\\\si\a\\\\o\\\\\100\0\eng\d 001484361 019__ $$a1410333378$$a1410389891$$a1410592158 001484361 020__ $$a9789819955473$$q(electronic bk.) 001484361 020__ $$a9819955475$$q(electronic bk.) 001484361 020__ $$z9789819955466 001484361 020__ $$z9819955467 001484361 0247_ $$a10.1007/978-981-99-5547-3$$2doi 001484361 035__ $$aSP(OCoLC)1410824708 001484361 040__ $$aGW5XE$$beng$$erda$$epn$$cGW5XE$$dOCLCO$$dEBLCP$$dYDX$$dOCLKB 001484361 049__ $$aISEA 001484361 050_4 $$aTA345 001484361 08204 $$a620.00285$$223/eng/20231128 001484361 1112_ $$aASEAN-Australian Engineering Congress$$d(2022 :$$cOnline) 001484361 24510 $$aProceedings of ASEAN-Australian Engineering Congress (AAEC2022) :$$bengineering solutions in the age of digital disruption /$$cChung Siung Choo, Basil T. Wong, Khairul Hafiz Bin Sharkawi, Daniel Kong, editors. 001484361 2463_ $$aAAEC 2022 001484361 264_1 $$aSingapore :$$bSpringer,$$c2023. 001484361 300__ $$a1 online resource (342 pages) :$$billustrations (black and white, and color). 001484361 336__ $$atext$$btxt$$2rdacontent 001484361 337__ $$acomputer$$bc$$2rdamedia 001484361 338__ $$aonline resource$$bcr$$2rdacarrier 001484361 4901_ $$aLecture notes in electrical engineering ;$$vvolume 1072 001484361 504__ $$aReferences -- Cough Sound Disease Detection with Artificial Intelligence -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 4 Results -- 5 Discussion -- 6 Conclusion -- References -- Data Analysis of Fly Ash Geopolymer Compressive Strength Using Machine Learning Method -- 1 Introduction -- 2 Methodology -- 2.1 Sample Preparation -- 2.2 Compressive Strength Test -- 2.3 Neural Network -- 3 Result and Discussion -- 3.1 Compressive Strength -- 3.2 Neural Network -- 4 Conclusion -- 5 Recommendations -- References 001484361 5050_ $$aIntro -- Foreword by Ir. Dennis Ong -- Foreword by Prof. Jugdutt Singh -- Preface -- Acknowledgements -- List of Reviewers -- Contents -- Artificial Intelligence and Machine Learning -- A Systematic Literature Review on Determining the Effectiveness of Short-Term COVID-19 Prediction Models -- 1 Introduction -- 2 Objectives -- 2.1 Inclusion and Exclusion Criteria -- 2.2 Quality Assessment and Coding -- 3 Methods -- 3.1 Machine Learning Models -- 3.2 Deep Learning Models -- 3.3 Predictive Analysis -- 3.4 GLEM and Hybrid EAMA Models -- 3.5 Other Methods -- 4 Discussion -- 5 Conclusion 001484361 5058_ $$aFeature Reduction of Relational Oil Drilling Data Before Propositionalization and Harmonization by Measuring Relational Data Missingness -- 1 Introduction -- 2 FSbP Via DAHFR -- 3 Data -- 4 Methodology -- 4.1 Determining a Baseline Feature -- 4.2 Relative Missing Rate Measurement -- 4.3 Feature Relevance Determination -- 4.4 Validation -- 5 Results and Discussion -- 6 Conclusion -- References -- Automation and Sensors -- Investigation of the Effect of Polyvinyl Acetate Coating on Multiple U-shaped Fibre Optic Sensors in Different Solution Conditions -- 1 Introduction -- 2 Background 001484361 5058_ $$a2.1 U-shaped FOS -- 2.2 Polyvinyl Acetate (PVAc) -- 3 Methodology -- 3.1 Equipment and Material Used -- 3.2 Fabrication of Fibre Probe -- 3.3 Fibre Coating with Dripping Method Experiment -- 3.4 Glycerol Solution (RI) Experiment -- 3.5 Honey Solution (RI) Experiment -- 3.6 Data Analysis -- 4 Result and Discussion -- 4.1 Fibre Coating with Dripping Method Experiment -- 4.2 Glycerol Solution (RI) Experiment -- 4.3 Honey Solution (RI) Experiment -- 4.4 Sensor Prototype Testing Equipment -- 5 Conclusion -- References 001484361 5058_ $$aTemperature Modulation of Metal Oxide Semiconductor Gas Sensors for Black Pepper Geo-Tracing -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 4 Results and Discussion -- 5 Conclusion -- References -- Education 4.0 -- Online Learning: Students' Barriers and Feedback on the Instructional Delivery Methods -- 1 Introduction -- 2 Materials and Methods -- 2.1 Target Respondent -- 2.2 Questionnaire Distribution -- 2.3 Questionnaire Design -- 2.4 Statistical Analysis -- 3 Results and Discussion -- 3.1 Students' Background -- 3.2 Students' Accessibility -- 3.3 Mode of Teaching -- 4 Conclusion 001484361 506__ $$aAccess limited to authorized users. 001484361 520__ $$aThis book presents the proceedings of the ASEAN-Australian Engineering Congress (AAEC2022), held as a virtual event, 1315 July 2022 with the theme Engineering Solutions in the Age of Digital Disruption. The book presents selected papers covering scientific research in the field of Engineering Computing, Network, Communication and Cybersecurity, Artificial Intelligence & Machine Learning, Materials Science & Manufacturing, Automation and Sensors, Smart Energy & Cities, Simulation & Optimisation and other Industry 4.0 related Technologies. The book appeals to researchers, academics, scientists, students, engineers and practitioners who are interested in the latest developments and applications related to addressing the Fourth Industrial Revolution (IR4.0). 001484361 588__ $$aDescription based on print version record. 001484361 650_0 $$aEngineering$$xData processing$$vCongresses. 001484361 650_0 $$aIndustry 4.0$$vCongresses. 001484361 650_6 $$aIngénierie$$xInformatique$$vCongrès. 001484361 650_6 $$aIndustrie 4.0$$vCongrès. 001484361 655_0 $$aElectronic books. 001484361 7001_ $$aChoo, Chung Siung,$$eeditor. 001484361 7001_ $$aWong, B. T.$$q(Basil T.),$$eeditor.$$1https://isni.org/isni/0000000425428281 001484361 7001_ $$aSharkawi, Khairul Hafiz Bin,$$eeditor. 001484361 7001_ $$aKong, Daniel,$$eeditor. 001484361 77608 $$iPrint version:$$aASEAN-Australian Engineering Congress (2022 : Online), creator.$$tProceedings of ASEAN-Australian Engineering Congress (AAEC2022).$$dSingapore : Springer, 2023$$z9789819955466$$w(OCoLC)1402254232 001484361 830_0 $$aLecture notes in electrical engineering ;$$vv. 1072. 001484361 852__ $$bebk 001484361 85640 $$3Springer Nature$$uhttps://univsouthin.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-981-99-5547-3$$zOnline Access$$91397441.1 001484361 909CO $$ooai:library.usi.edu:1484361$$pGLOBAL_SET 001484361 980__ $$aBIB 001484361 980__ $$aEBOOK 001484361 982__ $$aEbook 001484361 983__ $$aOnline 001484361 994__ $$a92$$bISE