001488197 000__ 13217nam\\22004577i\4500 001488197 001__ 1488197 001488197 003__ NhCcYBP 001488197 005__ 20240215003316.0 001488197 006__ m\\\\\o\\d\\\\\\\\ 001488197 007__ cr\cn\nnnunnun 001488197 008__ 231023s2024\\\\nju\\\\\ob\\\\001\0\eng\d 001488197 020__ $$a9781119718758 001488197 020__ $$a1119718759 001488197 020__ $$z9781119718710 001488197 0247_ $$a10.1002/9781119718758$$2doi 001488197 040__ $$aNhCcYBP$$cNhCcYBP 001488197 050_4 $$aTK7867.2$$b.A33 2024 001488197 08204 $$a621.382/24$$223/eng/20231023 001488197 1001_ $$aAdamczyk, Bogdan.$$eauthor 001488197 24510 $$aPrinciples of electromagnetic compatibility :$$bLaboratory exercises and lectures /$$cBogdan Adamczyk. 001488197 264_1 $$aHoboken, NJ :$$bWiley :$$bIEEE Press,$$c[2024] 001488197 300__ $$a1 online resource (592 pages) 001488197 336__ $$atext$$btxt$$2rdacontent 001488197 337__ $$acomputer$$bc$$2rdamedia 001488197 338__ $$aonline resource$$bcr$$2rdacarrier 001488197 504__ $$aIncludes bibliographical references and index. 001488197 5050_ $$81.1\x$$aPreface -- About the Companion Website -- 1 Frequency Spectra of Digital Signals -- 1.1 EMC Units -- 1.1.1 Logarithm and Decibel Definition -- 1.1.2 Power and Voltage (Current) Gain in dB -- 1.1.3 EMC dB Units -- 1.2 Fourier Series Representation of Periodic Signals -- 1.3 Spectrum of a Clock Signal -- 1.4 Effect of the Rise Time, Signal Amplitude, Fundamental Frequency, and Duty Cycle on the Signal Spectrum -- 1.4.1 Effect of the Rise Time -- 1.4.2 Effect of the Signal Amplitude -- 1.4.3 Effect of the Fundamental Frequency -- 1.4.4 Effect of the Duty Cycle -- 1.5 Laboratory Exercises -- 1.5.1 Spectrum of a Digital Clock Signal -- 1.5.2 Laboratory Equipment and Supplies -- 1.5.3 Measured Spectrum vs. Calculated Spectrum -- 1.5.4 Effect of the Rise Time -- 1.5.5 Effect of the Signal Amplitude -- 1.5.6 Effect of the Fundamental Frequency -- 1.5.7 Effect of the Duty Cycle -- References -- 2 EM Coupling Mechanisms -- 2.1 Wavelength and Electrical Dimensions -- 2.1.1 Concept of a Wave -- 2.1.2 Uniform Plane EM Wave in Time Domain -- 2.1.3 Uniform Plane EM Wave in Frequency Domain -- 2.2 EMC Interference Problem -- 2.3 Capacitive Coupling -- 2.3.1 Shielding to Reduce Capacitive Coupling -- 2.4 Inductive Coupling -- 2.4.1 Shielding to Reduce Inductive Coupling -- 2.5 Crosstalk Between PCB Traces -- 2.6 Common-Impedance Coupling -- 2.7 Laboratory Exercises -- 2.7.1 Crosstalk Between PCB Traces -- References -- 3 Non-Ideal Behavior of Passive Components -- 3.1 Resonance in RLC Circuits -- 3.1.1 "Pure" Series Resonance - Non-Ideal Capacitor Model -- 3.1.2 "Pure" Parallel Resonance - Ferrite Bead Model -- 3.1.3 "Hybrid" Series Resonance - Non-Ideal Resistor Model -- 3.1.4 "Hybrid" Parallel Resonance - Non-Ideal Inductor Model -- 3.2 Non-Ideal Behavior of Resistors -- 3.2.1 Circuit Model and Impedance -- 3.2.2 Parasitic Capacitance Estimation - Discrete Components -- 3.2.3 Parasitic Capacitance Estimation - PCB Components -- 3.3 Non-Ideal Behavior of Capacitors -- 3.3.1 Circuit Model and Impedance -- 3.3.2 Parasitic Inductance Estimation - Discrete Components -- 3.3.3 Parasitic Inductance Estimation - PCB Components -- 3.4 Non-Ideal Behavior of Inductors -- 3.4.1 Circuit Model and Impedance -- 3.4.2 Parasitic Capacitance Estimation - Discrete Components -- 3.4.3 Parasitic Capacitance Estimation - PCB Components -- 3.5 Non-Ideal Behavior of a PCB Trace -- 3.5.1 Circuit Model and Impedance -- 3.6 Impact of the PCB Trace Length on Impedance of the Passive Components -- 3.6.1 Impedance of a Resistor - Impact of the PCB Trace -- 3.6.2 Impedance of a Capacitor - Impact of the PCB Trace -- 3.6.3 Impedance of an Inductor - Impact of the PCB Trace -- 3.6.4 Impedance of an Inductor vs. Impedance of the PCB Trace -- 3.7 Laboratory Exercises -- 3.7.1 Non-Ideal Behavior of Capacitors and Inductors, and Impact of the PCB Trace Length on Impedance -- 3.7.2 Laboratory Equipment and Supplies -- 3.7.3 Laboratory Procedure - Non-Ideal Behavior of Capacitors and Inductors -- 3.7.4 Laboratory Procedure - Impact of the PCB Trace Length on Impedance -- References -- 4 Power Distribution Network -- 4.1 CMOS Inverter Switching -- 4.2 Decoupling Capacitors -- 4.2.1 Decoupling Capacitor Impact - Measurements -- 4.2.2 Decoupling Capacitor Configurations -- 4.3 Decoupling Capacitors and Embedded Capacitance -- 4.3.1 Decoupling Capacitors and Closely vs. Not Closely Spaced Power and Ground Planes -- 4.3.2 Impact of the Number and Values of the Decoupling Capacitors -- 4.4 Laboratory Exercises -- 4.4.1 Decoupling Capacitors -- 4.4.2 Embedded Capacitance and Decoupling Capacitors -- References -- 5 EMC Filters -- 5.1 Insertion Loss Definition -- 5.2 Basic Filter Configurations -- 5.3 Source and Load Impedance Impact -- 5.4 What Do We Mean by Low or High Impedance? -- 5.5 LC and CL Filters -- 5.5.1 LC Filter -- 5.5.2 CL Filter -- 5.5.3 LC Filter vs. CL Filter -- 5.6 Pi and T Filters -- 5.6.1 Pi Filter -- 5.6.2 T Filter -- 5.6.3 Pi Filter vs. T Filter -- 5.7 LCLC and CLCL Filters -- 5.7.1 LCLC Filter -- 5.7.2 CLCL Filter -- 5.7.3 LCLC Filter vs. CLCL Filter -- 5.8 Laboratory Exercises -- 5.8.1 Input Impedance and Insertion Loss of EMC Filters -- 5.8.2 Laboratory Equipment and Supplies -- 5.8.3 Laboratory Procedure -- References -- 6 Transmission Lines - Time Domain -- 6.1 Introduction -- 6.1.1 Transmission Line Effects -- 6.1.2 When a Line Is not a Transmission Line -- 6.1.3 Transmission Line Equations -- 6.2 Transient Analysis -- 6.2.1 Reflections at a Resistive Load -- 6.2.2 Reflections at a Resistive Discontinuity -- 6.2.3 Reflections at a Shunt Resistive Discontinuity -- 6.2.4 Reflections with Transmission Lines in Parallel -- 6.2.5 Reflections at a Reactive Load -- 6.2.6 Reflections at a Shunt Reactive Discontinuity -- 6.3 Eye Diagram -- 6.3.1 Fundamental Concepts -- 6.3.2 Impact of Driver, HDMI Cable, and Receiver -- 6.4 Laboratory Exercises -- 6.4.1 Transmission Line Reflections -- 6.4.2 Laboratory Equipment and Supplies -- 6.4.3 Reflections at a Resistive Load -- 6.4.4 Bounce Diagram -- 6.4.5 Reflections at a Resistive Discontinuity -- References -- 7 Transmission Lines - Frequency Domain -- 7.1 Frequency-Domain Solution -- 7.1.1 The Complete Circuit Model - Voltage, Current, and Input Impedance along the Transmission Line -- 7.1.2 Frequency-Domain Solution - Example -- 7.2 Smith Chart and Input Impedance to the Transmission Line -- 7.2.1 Smith Chart Fundamentals -- 7.2.2 Input Impedance to the Transmission Line -- 7.3 Standing Waves and VSWR -- 7.4 Laboratory Exercises -- 7.4.1 Input Impedance to Transmission Line - Smith Chart -- 7.4.2 Laboratory Procedure - Smith Chart -- References -- 8 Antennas and Radiation -- 8.1 Bridge Between the Transmission Line Theory and Antennas -- 8.2 Electric (Hertzian) Dipole Antenna -- 8.2.1 Wave Impedance and Far-Field Criterion -- 8.2.2 Wave Impedance in the Near Field -- 8.3 Magnetic Dipole Antenna -- 8.3.1 Wave Impedance and Far-Field Criterion -- 8.3.2 Wave Impedance in the Near Field -- 8.4 Half-Wave Dipole and Quarter-Wave Monopole Antennas -- 8.4.1 Half-Wave Dipole Antenna -- 8.4.2 Quarter-Wave Monopole Antenna -- 8.5 Balanced-Unbalanced Antenna Structures and Baluns -- 8.5.1 Balanced and Unbalanced Half-Wave Dipole Antenna -- 8.5.2 Sleeve (Bazooka) Balun -- 8.5.3 Input Impedance to the Transmission Line -- 8.5.4 Quarter-Wavelength Sleeve Balun -- 8.6 Sleeve Dipole Antenna Design and Build -- 8.6.1 Symmetrically Driven Half-Wave Dipole Antenna -- 8.6.2 Asymmetrically Driven Dipole Antenna and a Sleeve Dipole -- 8.6.3 Sleeve Dipole Antenna Design -- 8.6.4 Sleeve Dipole Antenna Design Through Simulation -- 8.6.5 Construction and Tuning of a Sleeve Dipole -- 8.7 Antennas Arrays -- 8.8 Log-Periodic Antenna -- 8.9 Biconical Antenna -- 8.10 Antenna Impedance and VSWR -- 8.11 Laboratory Exercises -- 8.11.1 Log-Periodic and Bicon Antenna Impedance and VSWR Measurements -- 8.11.2 Loop Antenna Construction -- References -- 9 Differential- and Common-Mode Currents and Radiation -- 9.1 Differential- and Common-Mode Currents -- 9.1.1 Common-Mode Current Creation -- 9.2 Common-Mode Choke -- 9.3 Differential-Mode and Common-Mode Radiation -- 9.3.1 Differential-Mode Radiation -- 9.3.2 Common-Mode Radiation -- 9.4 Laboratory Exercises -- 9.4.1 Differential-Mode and Common-Mode Current Measurement -- 9.4.2 Laboratory Equipment and Supplies -- 9.4.3 Laboratory Procedure - Differential-Mode and Common-Mode Current Measurements -- References -- 10 Return-Current Path, Flow, and Distribution -- 10.1 Return-Current Path -- 10.2 Return-Current Flow -- 10.3 Return-Current Distribution -- 10.3.1 Microstrip Line PCB -- 10.3.2 Stripline PCB -- 10.4 Laboratory Exercises -- 10.4.1 Path of the Return Current -- References -- 11 Shielding to Prevent Radiation -- 11.1 Uniform Plane Wave -- 11.1.1 Skin Depth -- 11.1.2 Current Density in Conductors -- 11.1.3 Reflection and Transmission at a Normal Boundary -- 11.2 Far-Field Shielding -- 11.2.1 Shielding Effectiveness - Exact Solution -- 11.2.2 Shielding Effectiveness - Approximate Solution - Version 1 -- 11.2.3 Shielding Effectiveness - Approximate Solution - Version 2 -- 11.2.4 Shielding Effectiveness - Simulations -- 11.3 Near-Field Shielding -- 11.3.1 Electric Field Sources -- 11.3.2 Magnetic Field Sources -- 11.3.3 Shielding Effectiveness - Simulations -- 11.3.4. 001488197 5058_ $$81.2\x$$aShielding Effectiveness - Measurements -- 11.4 Laboratory Exercises -- 11.4.1 Shielding Effectiveness - Simulations -- 11.4.2 Shielding Effectiveness - Measurements -- References -- 12 SMPS Design for EMC -- 12.1 Basics of SMPS Operation -- 12.1.1 Basic SMPS Topology -- 12.1.2 Basic SMPS Design -- 12.2 DC/DC Converter Design with EMC Considerations -- 12.2.1 Switching Frequency -- 12.2.2 Output Inductor -- 12.2.3 Output Capacitor -- 12.2.4 Catch Diode -- 12.2.5 Input Capacitor -- 12.2.6 Bootstrap Capacitor -- 12.2.7 Undervoltage Lockout -- 12.2.8 Feedback Pin -- 12.2.9 Compensation Network -- 12.2.10 Complete Regulator Circuitry -- 12.2.11 EMC Considerations -- 12.3 Laboratory Exercises -- 12.3.1 SMPS Design and Build -- 12.3.2 Laboratory Equipment and Supplies -- 12.3.3 Laboratory Procedure -- References -- A Evaluation of EMC Emissions and Ground Techniques on 1- and 2-Layer PCBs with Power Converters -- A. 1 Top-Level Description of the Design Problem -- A.. 1 Functional Block Details -- A.1. 2 One-Layer Board Topologies -- A.1. 3 Two-Layer Board Topologies -- A. 2 DC/DC Converter - Baseline EMC Emissions Evaluation -- A.2. 1 CISPR 25 Radiated Emissions Test Results -- A.. 2 CISPR 25 Conducted Emissions (Voltage Method) Test Results -- A.2. 3 CISPR 25 Conducted Emissions (Current Method) Test Results -- A. 3 DC/DC Converter - EMC Countermeasures - Radiated Emissions Results -- A.3. 1 EMC-A and EMC-E Input and Output Capacitor Impact -- A.3. 2 EMC-A Input Inductor Impact -- A.. 3 EMC-C Switching Inductor Impact -- A.3. 4 EMC-B and EMC-D Snubber Impact -- A.3. 5 EMC-A, EMC-E - Conducted Emissions Countermeasures Impact -- A.3. 6 Impact of the Shield Frame -- A. 4 DC/DC Converter - EMC Countermeasures - Conducted Emissions Results - Voltage Method -- A.4. 1 EMC-A and EMC-E Input and Output Capacitor Impact -- A.4. 2 EMC-A Input Inductor Impact -- A.4. 3 EMC-A Additional Input Capacitors Impact -- A.. 4 EMC-A Input Inductor Impact -- A.4. 5 EMC-C Switching Inductor Impact -- A.4. 6 EMC-B and EMC-D Snubber Impact -- A. 5 DC/DC Converter - EMC Countermeasures - Conducted Emissions Results - Current Method -- A.5. 1 EMC-A, EMC-C, and EMC-E Input and Output Capacitor and Inductor Impact -- A.5. 2 EMC-B and EMC-D Snubber Impact -- A. 6 PCB Layout Considerations -- A.6. 1 Introduction -- A.6. 2 Visualizing Complete Forward and Return Paths -- A.6. 3 Return-Plane Split in AC-DC Converter -- A. 7 AC/DC Converter Design with EMC Considerations -- A.7. 1 AC/DC Converter Schematics and Design Requirements -- A.7. 2 EMC Considerations -- A. 8 AC/DC Converter - Baseline EMC Emissions Evaluation -- A.8. 1 Radiated Emissions Test Results -- A.8. 2 Conducted Emissions Test Results -- A. 9 AC/DC Converter - EMC Countermeasures - Conducted and Radiated Emissions Results -- A.9. 1 Conducted Emissions Test Results -- A.9. 2 Radiated Emissions Test Results -- A. 10 Complete System - Conducted and Radiated Emissions Results -- A.0. 1 Complete System and Board Topologies -- A.10. 2 Conducted Emissions Results -- A.10. 3 Radiated Emissions Results -- A.10. 4 Conclusions -- References -- Index. 001488197 506__ $$aAccess limited to authorized users 001488197 533__ $$aElectronic reproduction.$$bAnn Arbor, MI$$nAvailable via World Wide Web. 001488197 588__ $$aDescription based on online resource; title from digital title page (viewed on October 25, 2023). 001488197 650_0 $$aElectromagnetic compatibility. 001488197 655_0 $$aElectronic books 001488197 7102_ $$aProQuest (Firm) 001488197 852__ $$bebk 001488197 85640 $$3GOBI DDA$$uhttps://univsouthin.idm.oclc.org/login?url=https://ebookcentral.proquest.com/lib/usiricelib-ebooks/detail.action?docID=30786529$$zOnline Access 001488197 909CO $$ooai:library.usi.edu:1488197$$pGLOBAL_SET 001488197 980__ $$aBIB 001488197 980__ $$aEBOOK 001488197 982__ $$aEbook 001488197 983__ $$aOnline