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Abstract: Anderson localization simulations in one-dimensional disordered optical systems
usually focus on the localization length or its inverse, but the calculation of the density of states
has appeared less frequently for such models. In this paper a technique originally used to calculate
the integrated density of states for one-dimensional disordered crystals supporting electron
propagation is modified for use with randomly layered optical media. The density of states is
then readily available via differentiation. The algorithm is demonstrated on one-dimensional
quarter-wave stack and non-quarter-wave stack models with layer thicknesses disordered.
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1. Introduction

The study of Anderson localization in one-dimensional (1D) optical systems has continued apace
for over three decades [1–20], with a strong focus on calculating the localization length or its
inverse. Density of states (DOS) simulations for disordered 1D optical systems have appeared
less frequently. This is likely explained by the ease with which the localization length can be
calculated, namely by tracking the growth of a state vector or state ratio to calculate a Lyapunov
exponent then taking the reciprocal. By contrast, the DOS is arrived at via differentiation of
the integrated density of states (IDOS), which itself depends on a phase calculation, and ideally
a nonreduced phase calculation, and thus presents much more of a computational challenge
than the localization length. In addition the localization length adequately captures the key
effect of Anderson localization, while the DOS’s connection with the Lyapunov exponent
(inverse localization length on a per bay basis) is seemingly mathematically obscured via the
Herbert-Jones-Thouless formula [9,19].

In the literature DOS calculations have been confined to simulations of a system with a
single passband [6,9] or to simulation of a single bandgap of a multi-bandgap system [5]. In
these instances eigenvalues were extracted from a transfer matrix with the model limited to the
simulation of hundreds of cells. Excellent analytical work [7] was done following up [5], but
this was based on a reduced phase and a reduced IDOS after which stringent approximations
were imposed with results displayed over only part of a bandgap and a bit beyond. A disordered
1D photonic crystal with sinusoidally varying index of refraction was considered in [17], but
the IDOS was shown for only one bandgap. A synthetic photonic lattice disordered temporally
[18] simulated DOS for 105 temporal cells, but was limited to two symmetric bands separated
by a gap, and, in addition, the DOS calculation technique was not explained. In contrast, this
paper provides a numerical algorithm for the IDOS applicable to a disordered 1D multi-passband
layered optical system with an almost limitless number of cells.

A technique not sufficiently appreciated to calculate the IDOS, with DOS being available via
differentiation, was originally developed by Lax and Phillips [21], then modified by Makinson
and Roberts [22], for electron propagation in 1D disordered crystals. This latter modification
is the jumping off point for the present paper. Their technique is modified for layered optical
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media in which layer thicknesses or indices of refraction or both could be randomized allowing
simulation of IDOS and DOS over multiple passbands and bandgaps.

Section 2 of this paper will describe the algorithm to calculate the IDOS based on the
work of [22]. This is followed in Section 3 by simulation results of both the IDOS and DOS
for quarter-wave stack and non-quarter-wave stack models from [23] with layer thicknesses
randomized. Concluding remarks are made in Section 4.

2. Algorithm to calculate integrated density of states for 1D randomly layered
optical media

To fix ideas and clarify notation we first examine the 1D periodic optical waveguide model
of [12] which consists of the repetition of two successive layers of thicknesses l1 and l2, with
corresponding piecewise constant indices of refraction n1 and n2, with layer thicknesses later
randomized in this paper. Two layers constitute a cell. The transfer through the two layers of the
ith cell is executed in two steps:
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where ψ = ψ(x, ω̄) is the Cartesian component of the electric field at normal incidence, with x
the space variable in the direction of repetition, ω̄ is a non-dimensional frequency to be specified
later, ψ ′ is the first partial derivative with respect to the space variable, and k0 is the propagation
number in vacuum. Also note the use of the superscripts in the equations above and below.
The superscript (1) means lim x → l1 − 0, the edge of layer l1 just before layer l2, and similarly
superscript (2) means lim x → l2 − 0, the edge of layer l2 just before layer l1.

The goal of the algorithm is to find I(ω̄) the number of eigenstates less than some frequency ω̄,
normalized by the number of cells N, namely, the IDOS for positive frequencies I(ω̄) = ∫ ω̄0 ρ(˜̄︁ω)d˜̄︁ω,
where the DOS ρ(ω̄) =

∑︁
j δ(ω̄ − ω̄j)/N. With appropriate boundary conditions it is well known

[22,24] that NI(ω̄) is the number of nodes of ψ and so the IDOS is readily available via a node
count of ψ. Further [21] clarifies that computations of the node count are simplified by tracking
the sign changes of the state ratio ψ ′/ψ. Also see the extensive discussion of [25], though
note his use of the reciprocal ratio, ψ/ψ ′. The question is how to properly execute that count
over multiple passbands. We find that the algorithm of [22] properly executes the count for a
Kronig-Penney type model, and so given the mathematical correspondence noted by [23] between
the Kronig-Penney model and one-dimensional optical layered systems this suggests appropriate
modifications of the algorithm of [22] should work for our purposes.

Continuing from Eq. (1) we have,
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Rewriting Eq. (4)
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then taking the ratio of Eqs. (3) and (5) we arrive at an equation for the (normalized) state ratio
for this layer on which we will do the node count leading to the IDOS:(︃
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Further simplification of the right side of Eq. (6) leads to
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in Eq. (8), and multiplying both
sides of the resulting equation by (-1), we arrive at:
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Note the use of the superscript (2→1) which means the lim x → l2 + 0 indicating the transition
from layer l2 to the beginning of layer l1 and similarly the subscript i − 1 → i indicating the
transition to the ith cell. Invoking a trigonometric identity, we have

tan χ(1)i = tan(ϕ(2→1)
i−1→i + n1l1k0). (10)

And finally,
χ
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A similar line of reasoning can be executed for layer l2 of the ith cell resulting in

χ
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where the superscript (1→2) means the lim x → l1 + 0 indicating the transition from layer l1 to
the beginning of layer l2.

With these mathematical preliminaries out of the way, we are now in a position to set out the
algorithm to do the node counting. The algorithm will carefully take into account the two layers
making up each cell and, crucially, the transition between the two layers. First we set out some
simplifying notation, letting

a(1)i = − tan χ(1)i (13)
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i (14)

a(2)i = − tan χ(2)i (15)
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First, initializations are set with idossum(2)
0 = 0, whose subsequent terms will accumulate

the node count as the algorithm proceeds thru the bilayers of each cell, and a(2)0 = 1, and with



Research Article Vol. 31, No. 21 / 9 Oct 2023 / Optics Express 34629
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2 , the algorithm proceeds by immediately transitioning
to layer l1 with refractive index n1 of cell i = 1,
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where int [] takes the integer part of the argument; the algorithm continues,

a(1)i = − tan χ(1)i (21)

now the transition is made to layer l2 with refractive index n2
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with the algorithm continuing into the next cell, i.e., into the next double layer via Eq. (17). After
iterating through all of the cells the IDOS is calculated as

I(ω̄) =
idossum(2)

N
N

. (27)

Because there is no final boundary condition imposed for the algorithm there is a ±1 ambiguity
in the node count. The DOS is then found by numerical differentiation, namely ρ(ω̄) = dI(ω̄)

dω̄
An explanation is warranted of the argument of the int[] and of the ϕ(2→1)

i−1→i and ϕ(1→2)
i terms,

which we will refer to collectively as ϕi, and likewise χi for χ(1)i and χ
(2)
i . In Eqs. (20) and (25)

the int[] function truncates the phase in order to properly update the node count (idossum(1,2)
i )

with the proper integer number of nodes in a given layer. But the phase remainder, which ranges
between 0 and π, cannot simply be discarded. That phase remainder is carried forward with the
tan χi function, then scaled and followed by an arctan giving ϕi which now carries the phase
remainder into the next layer. But this process with the tan and arctan operations causes the
phase remainder, ϕi, to now range from − π

2 to + π2 . Therefore in Eqs. (20) and (25) a phase of π
2

has to be added back. In this way the phase is properly accounted for in the algorithm.

3. Quarter-wave stack and non-quarter-wave stack simulations

The parameters in Eqs. (1) and (2) were set to the quarter-wave stack (QWS) and non-quarter-wave
stack models (Non-QWS) described in [23], after which layer thicknesses were randomized and
the above algorithm employed to calculate the IDOS and DOS for those models. Extensive
simulations show that the IDOS and DOS are self-averaging quantities, so Monte Carlo results
below are done for very long stacks (N = 106 or 108) without any ensemble averaging. For the
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worst case, namely the DOS of the Non-QWS at 10% disorder for frequencies just above the
sixth bandgap, the result is stable to the second rounded decimal for a simulation with 108 cells,
and such stability will suffice for our purposes.

Following [23] we let n1 = 1.45 and n2 = 2.65 for both models and calculate results for
non-dimensional frequency ω̄ = ω(l1 + l2)/c = ωΛ/c over the range of 0 to 10, which spans
the IR through the UV. Note that k0 = ω̄/Λ. In what follows the IDOS and DOS for the
perfectly periodic models (blue line in the figures) were generated from the unwrapped Bloch
wavefunction, K = K(ω̄) (a reduced band structure is presented in [23] as ω̄ versus KΛ), where
I(ω̄)periodic =

|Re(KΛ) |

π and ρ(ω̄)periodic =
d |Re(KΛ) |

πdω̄ .

3.1. Quarter-wave stack

For the QWS simulations l1 = λ0/4n1 = 258.6 nm, l2 = λ0/4n2 = 141.5 nm, with λ0 = 1.5 µm.
The results for the perfectly periodic model were generated, then the two randomized models were
produced by drawing each layer thickness l1 and l2 from uniform probability density functions of
width [l1,2 ± ∆l1,2] where ∆ = 0.05, then ∆ = 0.1, i.e. 5% and 10% disorder, thus each layer was
simultaneously randomized in the same manner.

The results for the IDOS of the QWS are shown across the full frequency range in Fig. 1. The
existence in the QWS of two vanished even photonic bandgaps, one between the first and second
bandgaps and another between the second and third bandgaps, results in a value of three and five,
respectively, for the second and third bandgaps of the IDOS. Note as frequency ranges through
the first passband and bandgap to higher passbands and bandgaps, the algorithm provides a
continuous function, and as disorder increases, the edges of the higher bandgaps are substantially
smoothed.

The IDOS of the QWS is shown in close-up fashion for its third bandgap in Fig. 2. With 5%
disorder in the layer thicknesses the bandgap is reduced by close to 50% of its perfectly periodic
width, and then is completely obliterated with disorder at the 10% level.
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Fig. 1. IDOS for perfectly periodic QWS and two randomized QWS models with each
bilayer thickness randomized 5% and 10%, using 106 cells in the randomized simulations.
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Fig. 2. IDOS for third bandgap of perfectly periodic QWS and two randomized stacks
with each bilayer thickness randomized 5% and 10%, using 106 cells in the randomized
simulations.

The DOS, calculated via numerical differentiation of the corresponding IDOS results, are
shown for the perfectly periodic QWS model and the two disordered models in Fig. 3.

Clearly these levels of disorder had little impact on the first bandgap, while the second bandgap
begins suffering a decrease in its frequency range at 5% disorder and becomes quite narrow at
10% disorder, and finally in the third bandgap the 5% disorder substantially narrows the third
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Fig. 3. DOS for perfectly periodic QWS and two randomized stacks with each bilayer
thickness randomized 5% and 10%, using 108 cells in the randomized simulations.



Research Article Vol. 31, No. 21 / 9 Oct 2023 / Optics Express 34632

bandgap while the 10% disorder wipes out the third bandgap entirely. In addition, the bandedge
peaks became more rounded with increasing frequency and increasing disorder.

Finally, it should be noted that for the QWS a singularity appeared in the middle of the first
and third bandgap of the IDOS and DOS for this algorithm when the disorder was set exactly to
zero. The singularities could no longer be discerned, for example, when just a small amount
of disorder (∆ = 10−10) was included for simulations of N ≥ 105 cells. This is displayed in
Fig. 4. Otherwise, there was a perfect match between the I(ω̄)periodic and ρ(ω̄)periodic and their
counterparts generated by this algorithm.
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Fig. 4. IDOS for perfectly periodic QWS (∆ = 0) in (a) showing the singularities in the
middle of the first and third bandgaps with corresponding DOS in (b), and in (c) the IDOS
for the very slightly randomized QWS model (∆ = 10−10) with corresponding DOS in (d)
using 106 cells in each simulation.

3.2. Non-quarter-wave stack

To further exercise the algorithm, a Non-QWS counterpart to the QWS model in the previous
section was employed. From [23] the Non-QWS has layer thicknesses l1 = 200.05 nm, and
l2 = 200.05 nm which are then subjected to randomization. This Non-QWS has a much richer
bandgap structure with six bandgaps over the same frequency range for which there were only
three bandgaps in the QWS counterpart. In particular the third bandgap of the Non-QWS is very
narrow.

The results for the IDOS of the Non-QWS are shown across the full frequency range in Fig. 5.
Again, note as frequency ranges through the first passband and bandgap to higher passbands and
bandgaps, the algorithm provides a continuous function, and as disorder increases, the edges of
the higher bandgaps are increasingly smoothed as in the QWS counterpart. Note the six bandgaps
across the frequency range.

We display the close-up IDOS results for the sixth bandgap in Fig. 6, but in this case limiting
the disorder first to 2.5% resulting in a close to 50% reduction in the bandgap, and then to 5%
disorder obliterating the bandgap completely.

The DOS found via numerical differentiation of the IDOS results are presented for this
Non-QWS in Fig. 7 for 5% and 10% layer disorders, as well as for the perfectly periodic case.

Clearly, the disorder produced increasingly narrow or even vanishing bandgaps as frequency
increased, though the very narrow third bandgap has suffered this more intensely despite being
in the middle of the frequency range. Again, bandedge peaks were eroded with increasing
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Fig. 5. IDOS for perfectly periodic Non-QWS and two randomized Non-QWS models
with each bilayer thickness randomized 5% and 10%, using 106 cells in the randomized
simulations.
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Fig. 6. IDOS for sixth bandgap of perfectly periodic Non-QWS model and two models
with each bilayer thickness randomized 2.5% and 5%, using 106 cells in the randomized
simulations.

frequency and disorder, though the third bandgap edges suffered more than those of the next
higher frequency bandedge. The difference in narrowing or obliterating of bandgaps in going
from 5% disorder to 10% disorder is most obvious in the second, fourth and fifth bandgaps, with
the second bandgap narrowed and the fourth and fifth bandgaps obliterated. Otherwise the first
bandgap is not much affected by the jump from 5% to 10% disorder, while the third and sixth
bandgaps had already disappeared at 5% disorder and simply had a larger DOS value at 10%
disorder. No singularities were noted in the algorithm as the disorder went to zero for this model,
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Fig. 7. DOS for perfectly periodic Non-QWS and for models with each bilayer thickness
randomized 5% then 10%, using 108 cells in the randomized simulations.

and the zero-disorder model coincided precisely with the I(ω̄)periodic and ρ(ω̄)periodic generated
from the Non-QWS band structure.

4. Conclusion

A numerical algorithm capable of determining the IDOS, and DOS via differentiation, across
multiple bandgaps for 1D layered optical media has been demonstrated on QWS and Non-QWS
models with layer thicknesses randomized. A singularity in the IDOS/DOS was noted for the
middle of two bandgaps of only the QWS when the disorder went to zero in the algorithm, and
the singularity was not discernible for slightly nonzero disorder. The disorder most notably
shrunk the highest frequency bandgaps, though the very narrow third bandgap near the middle of
the frequency range of the Non-QWS was also noticeably impacted. Future papers will explore
DOS calculations for models with randomized indices of refraction taking into account the
Kramers-Kronig relations and for models with off-axis incidence and polarization effects. It is
hoped this work will contribute to a more complete suite of numerical tools with which to study
1D optical Anderson localization.
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